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Abstract. In this article, the use of software design patterns for modeling the stages 

of a compiler is presented. The compiler is generated for expressing disjunctions and 

logic propositions into optimization mathematical programs. It works linked to a 

mathematical modeling system, because the introduction of logic into those programs 

completes them instead of replacing them. It works as a post-compilation step of the 

mathematical language compiler. The language for disjunctions and logic 

propositions is based on the proposal of Vecchietti and Grossmann (2000). In order 

to accomplish the objectives: independence of the mathematical system, flexibil ity 

for introducing changes and easy to maintain; several software design patterns are 

used such as: Visitor, Composite, State and Adapter. The compiler is now linked to 

the mathematical program system GAMS. Several test are performed to check its 

behavior. In the future some other mathematical systems wil l be used to link the 

compiler.  

 
1. Introduction 

Traditionally, optimization models involving linear/non-linear equations and constraints, and 

also discrete decisions are represented as mixed integer non-linear program problems (MINLP). 

These problems are diff icult to solve, one important issue to reach the solution is to provide an 

eff icient model for the discrete decisions. Over the past five years there was an intensive research 

activity on disjunctive programming as an alternative for the MINLP formulation. Disjunctions and 

logic propositions are used to represent the discrete decisions in the continuous and discrete space 

respectively. The logic is introduced at the level of the problem formulation and solution 

techniques. The main research areas dealing with logic into mathematical program problems are: 

Disjunctive Programming (Raman and Grossmann, 1994; Turkay and Grossmann 1996, Bjorkqvist 

and Westerlund, 1999; Vecchietti and Grossmann, 1999) and Constrained Logic Programming 

(Hajian et al. 1995; Darby-Dowman et al, 1997). Since the modeling framework proposed by 

Raman and Grossmann (1994), new algorithms and solution techniques have been proposed. One of 



main reasons those techniques have not been widely used yet, is because there is not a system to 

write those type of models. The most known systems for solving mathematical optimization 

problems, e.g. GAMS, LINDO, AMPL, are not prepared for posing a disjunctive model. They do 

not have a language for expressing disjunctions and logic propositions. Therefore, it is necessary a 

language to incorporate disjunction and logic propositions in to mathematical program problems. 

This work is concerned about disjunctive models and the language compiler implementation for 

writing this type of models based on the language approach proposed by Vecchietti and Grossmann 

(2000). The compiler has been implemented in a computer code called LogMIP. This article 

describes the compiler stages, their modeling and design using software patterns, that provide to the 

compiler several important features such as: modularity, flexibility, maintainability.  

 

 

2. Compiler stages 

Compilers by definition take a string as input and produce another string as output. Text 

formatters, programs that convert file formats or different programming languages drop in the 

category of compilers. One of the main lessons learnt about compilers is how to split it into parts. 

At the highest level there are three parts: the front end that understands the syntax of the source 

language, the mid-end that performs high level transforming/optimizations and the back end that 

produces the output in a previously established language. Fig. 1 represents this situation. 

 

 

At a lower level, a compiler consists of various stages (Aho et al., 1986). In the LogMIP 

compiler designed five of them are implemented: Lexer, Parser, Semantic Analysis, Intermediate 

Code extractor and Code Extractor. Each of these stages will be explained in this paper. In Fig. 2 it 

is shown this fives stages and the data structure and data passed between these stages. 
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Figure 2: Phases adopted in LogMip’s Compiler 



For LogMIP we are extending an existing language for expressing mathematical program 

problems, adding to it capabilities for expressing disjunctions and logic constraints. This situation 

makes LogMIP Compiler (LMC) has special characteristics, because the interaction between both 

compilers must be solved. This situation can be seen in Fig. 3: 

 

 

 

 

From Fig. 3, it can be seen that LMC is receiving a mathematical program model syntactically 

correct according to the mathematical language. The Extended Input file (with mathematical and 

disjunctive constraints) has been checked in its mathematical constructions. Then the LogMIP 

compiler checks the logic constructions and, if they are correct, the output passes to the Solver such 

that the model is solved. Using this approach a great level of independence is obtained, because the 

LMC can extend any mathematical program system. Besides, on the other end any Solver 

implementing the solution algorithms can be used. 

The following sections explain how is reached the first step, how is mapped the second one, 

shows the capabilities of this approach and the future work in LogMIP Compiler. 

 

3. Design Patterns used into LogMIP compiler  

Lexer (or lexical analyzer) 

The lexer is the first step the language compiler. Its purpose is to decompose the input 

stream into tokens, which represents reserved words in the language under analysis (LogMIP and 

Mathematical Language) and some string that have extra information associated (e.g.: identifiers, 

numbers). Besides, each token have a position in the input stream and a code that identifies it from 

the other tokens of the language. Fig 4. shows those concepts in an object oriented view: 
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Figure 4: Terminal Symbols Representation in LogMip Compiler Lexer. 



Parser (or Syntax Analyzer).  

Parsing is the process of understanding the language syntax, such that it can be represented 

by the compiler internal data structures. The most sophisticated ideas humans can relay to 

computers are communicated with programming languages. This has made programming languages 

compromises between the human thought process, the computers execution process and the 

computers capability to understand a language. The parser deals with the last facet of the problem. 

In a more strict definition, the parser is the one, which verifies if the input is valid under the 

grammar describing the language. If the input is a valid one, the parser must generate a syntax tree 

representing in an internal structure the information modeled on it. This syntax tree is an 

intermediate representation of the input analyzed, which is used by the next phases of the compiler 

to get a result. Usually it consists of an n-tree where the leaves are tokens (terminal symbols) found 

in the input, the intermediate nodes represent the different rules matched by the parser, and the root 

symbolizes the input itself. For the tree representation is used the Composite design pattern 

(Gamma, 1994). This pattern composes objects into tree structures to represent part-whole 

hierarchies, and lets clients treat individual objects and compositions of objects uniformly. The 

implementation is shown in Fig. 5. 

 

The tree is created as follows: first, the parser always has a node representing the root (the 

input representation). Then, once the parser recognizes a rule, it creates a new node (a symbol) that 

is the internal representation for that rule and adds it to the tree. Because this process consumes 

huge amounts of memory and processor’s time, it is avoided the creation of nodes and relationships 

when it is known the tree wil l not be used. It occurs when the parser founds a lexical or a syntax 

error. In this case the compiler wil l not attempt to continue with the other phases because it knows 

the input is incorrect. In this situation the compiler will try to find more lexical/syntax errors on the 

input. Once the parsing is done, no more phases will then be executed. This means that while the 

input is valid the parser must construct nodes and add it to the syntax tree. When a lexical or  syntax 

error is discovered, the parser stops the tree generation because the compiler wil l finish the 

execution after this phase.  The parser state diagram is shown in Fig. 6. 

The State design pattern (Gamma, 1994) is used to model this situation. The abstraction that 

encapsulates the parser states and their behavior is AbstractSyntaxTreeConstructor where two 

specializations are introduced, which are AstcValid for the “constructor” state and AstcInvalid for 

the errors finder. Under this situation it can be considered that there are two families of symbols: 

Terminal NonTerminal 

Symbol 

Figure 5: Syntax Tree with Composite 



Real Symbols and Null Symbols. Real Symbols are those instantiated while the input is valid. Null 

Symbols are used for invalid inputs. The creation of those object families (Real and Nulls) is 

performed by the Abstract Factory pattern implementation.  

 

 

 

 

 

 

With this approach, the parser could change the state and still continue the process of 

creating symbols (nodes) for the syntax tree. More independence respect of the Subjacent 

Mathematical Compiler (SMC) is obtained because this representation permits to change the leaves 

(terminal symbols) or even the intermediate nodes (the rules that conforms the LogMip grammar) 

without changing the parser itself (note that this change could be necessary to make LogMIP 

grammar naturally absorbed by the SMC grammar). 

The difference between the two specializations is that while AstcValid create nodes and the 

relationships between the nodes, AstcInvalid does not make anything about them. Fig. 7 shows the 

interface of AbstractSyntaxTreeConstructor and the implementations of three methods: one that 

relates two symbols, one that creates a symbol, and the other that manipulates an input in the 

specialization. 
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add(rule : NonTerminal*, elem : Symbol*) : Symbol* 
newAccess(id : Symbol*) : Symbol* 
newDeclarationsSentence() : Symbol* 
... 
analyzer() : SyntaxAnalyzer* 
errorFounded(anError : Error*) 
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Symbol* add(NonTerminal* rule, Symbol* elem) { 
  rule->add(element); 
   return rule; 
} 
void errorFounded(Error* e) { 
  analyzer()->setConstructor(new AstcInvalid()); 
  analyzer()->errorFounded(e); 
} 
Symbol* newDeclaration(Symbol* id, Symbol* txt) 
{ return new DeclarationSymbol(disjunction, txt); } 

{ return rule; } 

void errorFounded(Error* e) 
{ errorsManager()->add(e); } 

Symbol* newDeclaration(Symbol* id, Symbol* txt) 
{ return null; } 

Symbol* add(NonTerminal* rule, Symbol* elem) 

Figure 7: State & Abstract Factory Patterns in the LogMip Abstract Syntax Tree Constructor 



 

The Semantic Analyzer.  

This is the first step of the denominated mid-end part. This analyzer is the responsible for 

evaluating if the problem input stored on the syntax tree (sentences, expressions, etc.) is conformant 

with the semantics of the input language. At this point LogMIP Compiler evaluates: 
�

the declarations of disjunction entities, 
�

if the modeler is reinterpreting the mathematical identifiers, 
�

if the modeler is declaring a disjunction that is already declared, 
�

if the modeler is defining a disjunction more than one time, 
�

if an access to an identifier corresponds to the category expected (LogMIP and 

Mathematical ones) 
�

and the relationships between the disjunctive term conditions. 

At this point it is important to define the interaction between de LogMIP compiler (LMC) and 

the Mathematical compiler (SMC). The interaction occurs at the level of identifiers, because 

identifiers of the mathematical language are used to define constructions in LogMIP language. Two 

implementations of the Adapter design pattern are used for this purpose: one is defined for interact 

with all the entities (Identifier abstraction), and the other is modeled for treating mathematical 

identifiers loader (IdentifiersLoader abstraction). In this way, if LMC is linked to a different SMC, 

a new implementation of Identifier must be done plus a new loader of SMC identifiers table. No 

other change is necessary on the rest of the compiler. Fig. 8 shows the Adpater implementation and 

how the Template Method pattern is used to define a common algorithm to load the mathematical 

symbols. This method is used to guarantee that when a mathematical symbol is loaded all the 

conditions to access it are already loaded. 
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Figure 8: Adapter & Template Method Patterns in the LogMip Compiler 



 

The Visitor design pattern is used to implement the mid -end algorithms that visit the nodes 

of the syntax tree. This choice was made because this pattern allows the algorithm definitions to 

operate over the abstractions without modifying them. Using this approach the compiler could add 

and subtract operations on the syntax tree without modifying its representation. Moreover, the 

NonTerminal abstraction (the ones who represents the different rules that conforms the LogMIP 

grammar) has been modeled with an implementation of the Iterator method, such that Visitor can 

parse non-terminal symbols without known its internal structure. Complement this approach an 

implementation of the Command design pattern, which lets the compiler to use the iteration 

algorithms over the tree, encapsulating the invocation to the accept method. This model is shown in 

Fig. 9: 

 

 

 

 

 

 

 

 

 

 

When the parser finds an access to an identifier, it adds a new node in the syntax tree that is 

an instance of the AccessSymbol class. This class represents any access in the model, access to 

LogMIP disjunction identifiers, mathematical identifiers (variables, restrictions, indices) or 

individual index items. Due to there is only one method that “parse” a node, the semantic analyzer 

must consult itself the access type is validating, which can be deduced from the context 

information. After that, it performs the corresponding action. This situation limits the analyzer 

behavior to a numbered of access types, meaning that if a new type of access or a new type of 

context access increases LogMIP semantics, the analyzer must be changed to consider the new 

situation. To solve this problem, the semantic of the accesses was considered as a part of the 

visit(sentence : SentenceIfSymbol&) 

Figure 9: Visitor & Command Patterns at LogMip Syntax Tree/Mid-End 
Part 
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Semantic Analyzer states. The design pattern State was implemented to model that behavior 

because it allows new states (access types) without introducing changes in the Semantic Analyzer. 

In this way, when the analyzer arrives to an access symbol, delegates the corresponding 

actions to the “access semantic state”. This is shown in Fig. 10. 

 

 

 

 

 

 

 

Intermediate Code Generation.  

This phase is the responsible of converting the human legible representation into a machine 

code representation. At this point all language constructions have been checked, they are free of 

errors, and the compiler can now traduce the input to a more efficient representation, not necessary 

the final one, introducing some improvements (called optimizations). In our case we have to iterate 

over the syntax tree to generate a new interpretation of the logic information modeled by disjuntions 

and logic constraints. This phase is related to the mid-end part and is modeled using the Visitor 

implementation, which has been introduced with the Semantic Analyzer. This phase uses also the 

State design pattern already explained for the semantic accesses. So that, in this section it will be 

explained the basics of the Intermediate Code Generator (ICD) (see Fig. 11).  

 
 
 
 
 
 
 
  The internal code representation is similar to the nodes for the syntax tree viewed before. In 

deed, there is a one to one relationship for almost every symbol that is non-terminal. To model this 

semantic representation a mix between Visitor & Composite patterns was used (Fig. 12). 

In the InternalSemantic abstraction, there are three methods defined: accept() defines new 

operations over the ICR without changing it, generateLogic() insert into the output stream the 

CompilerMidPhase 

InternalCodeGenerator AccessCodeGenerator state 

Figure 11: Internal Code Generator abstraction in the 
LogMip’s  Compiler 
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information about LogMIP constructions (the disjunctive logic) in a pre-established format; and 

finally generateLogicUsing(), which is used to insert into the output stream LogMIP constructions 

with some restrictions in the generated logic. The graph of this model is shown in Fig. 12. 

 

 

 

 

 

 

 

 

 

 

 

 

Another abstraction called CompilerBackPhase is defined to visit InternalSemantic’s 

specializations, but it is not used at this moment of the model, it is only defined to allow the 

expansion of LMC such that it adopt some new action without change the semantic abstractions. 

 

4. The Compiler Abstraction 

In the previous sections the components and the internal representation of the LMC have 

been presented, but nothing has been said about the compiler itself. Although, the compiler can be 

defined by using its components (lexer, parser, table of identifiers and so on) without nothing more, 

it would be complex to see all the interactions and relationships existing between them. Further 

more, it could be too complex to define a new specialization of LMC to interact with another 

mathematic compiler. 

To encapsulate this knowledge and to provide a single, common interface to the compiler, 

the Facade design pattern is used. By adopting it, a compiler client only has to request the 

compilation of the input. If a new mathematic compiler will be linked to LMC, it will be necessary 

the specialization of the concept given before in some pre-defined way. The Facade class diagram 

is shown in Fig. 13. 

Figure 12: Internal Code representation for the LogMip’s 
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Besides, the compiler has to permit a new specialization to achieve new mathematical 

compilers. Such objective has been traduced in the introduction of the Builder design method. With 

this, a modeler can introduce a new specialization of LogmipCompiler without worries about how 

the compiler has to deal with them. The Builder implementation is presented in Fig. 14. In that 

figure is also shown a possible specialization of LogmipCompiler to interact with the mathematical 

system GAMS. 

LogmipCompiler abstraction provides a common sequence to perform the compilation of 

the inputs leaving to its specialization how the actions of this sequence are executed. This is 

modeled using the Template Method pattern over the compile() method of LogmipCompiler. The 

algorithm used as the implementation of the template method is shown in Text 1. 

An abstraction denoted as Arguments provides the independency about the way LMC can 

be executed. This means that the specialization of LogmipCompiler could define extra invocation 

parameters, which do not affect compile() method. If a mathematic compiler needs something not 

provided yet this model can insert it into the specialization. The arguments abstraction is an 

Abstract factory absorbing the parameters needed by the specialization. 

 

 

Figure 13: Facade Design Pattern in LogMip’s Compiler 
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Finally, note that the code extraction phase of the LMC it is not explained anywhere. The 

reason is because its definition has been delegated to the generateLogic() method defined at 

InternalSemantic. This is shown in Text 2. This is not a limitation in the code extraction phase. If a 

solver does not understand the output of the logic generated by LogMIP compiler, a new Code 

Extraction Phase can be generated as a specialization of CompilerBackPhase. Fig. 15 shows an 

example of this. 

 

 

 

 

void LogmipCompiler::compile(Arguments& arguments) {  

    createErrorsManager(); 

    precompile(arguments); 

    analyseSyntax(); 

    analyzeSemantic(); 

    generateCode(); 

    obtainLogic(); 

    solve(); 

} 

Text 1: Template Method pattern in the LogMip’s Compiler 

Figure 14: LogMip compiler as an Builder pattern implementation 
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createLexer(); 

void loadMathIdentifiers() { 
  createLoader(); 
  getLoader()->load(...); 
  _identifiers = getLoader()->identifiers(); 
} 

void createParser() { 
  if (NULL != _parser) { 
    createTreeConstructor(); 
  } 
  _parser=new GmsParser(getLexer(),getTreeConstructor); 
} 
 

void createLexer() { 
  if (NULL != _lexer) 
    _lexer=new GmsLexer; 
} 

void LogmipCompiler::generateCode() {  

    logmipModel()->generateLogic(outputStream()); 

} 

Text 2: Template Method pattern in the Code Extractor Phase 



 

 

 

 

 

 

 

 

 

5. Conclusions 

We have presented the model of a compiler to express disjunctions and logic propositions 

with unusual characteristics because it works as a post-compilation step. The input of LMC is the 

output of a mathematical compiler, and the output of LMC is expected by another application 

commonly a mathematical/logic solver. Under this context, the objectives for the LogMIP compiler 

generation were: a high independence from the mathematical compiler that LMC is extended, 

flexible to introduce new constructions and easy to maintain. 

To accomplish those objectives we have used some special software design patterns: the 

State allows as to extend the model in an easy way by encapsulating the possible states of the 

abstractions and to change the different states the abstractions can hold; Visitor permits a flexible 

model extension by defining the operations in the mid-end and back-end stages out of the internal 

compiler representation, Adapter allows the independence of LMC from the SMC. Other software 

design pattern as was explained before helps in accomplish the objectives of this work. 

 LMC is now linked to the mathematical system GAMS, we are testing its behavior. We are 

working on the other end of the compilation: the solvers. For the future the plan is to link LMC to 

other SMC like AMPL  
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