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/12 /Abstract

/13 /

/14 / This paper addresses the relaxations in alternative models for disjunctions, big-M and convex hull model, in order to develop

/15 /guidelines and insights when formulating Mixed-Integer Non-Linear Programming (MINLP), Generalized Disjunctive Program-

/16 /ming (GDP), or hybrid models. Characterization and properties are presented for various types of disjunctions. An interesting result

/17 /is presented for improper disjunctions where results in the continuous space differ from the ones in the mixed-integer space. A

/18 /cutting plane method is also proposed that avoids the explicit generation of equations and variables of the convex hull. Several

/19 /examples are presented throughout the paper, as well as a small process synthesis problem, which is solved with the proposed cutting

/20 /plane method.

/21 /# 2002 Published by Elsevier Science Ltd.

/22 /Keywords: Discrete�/continuous optimization; Mixed-integer nonlinear programming; Generalized disjunctive programming; Big-M relaxation;
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/24 /1. Introduction

/25 / Developing optimization models with discrete and

/26 /continuous variables is not a trivial task. The modeler

/27 /has often several alternative formulations for the same

/28 /problem, and each of them can have a very different

/29 /performance in the efficiency on the problem solution.

/30 /In the area of Process System Engineering models
/31 /commonly involve linear and nonlinear constraints

/32 /and discrete choices. The traditional model that has

/33 /been used in the past corresponds to a mixed-integer

/34 /optimization program whose representation can be

/35 /expressed in the following equation form (Grossmann

/36 /& Kravanja, 1997):

37 min Z�f (x)�dT y

38 s:t: g(x)50 (PA)

39 r(x)�Ly50

40 Ay]a

41x � Rn; y � f0; 1gq

/ 42/where f(x), g (x ) and r(x ) are linear and/or nonlinear

/ 43/functions. In the model (PA) the discrete choices are

/ 44/represented with the binary variables y involving linear

/ 45/terms.

/ 46/ More recently, generalized disjunctive programming

/ 47/(Raman & Grossmann, 1994; Türkay & Grossmann,
/ 48/1996) has been proposed as an alternative to the model

/ 49/(PA). A generalized disjunctive program can be for-

/ 50/mulated as follows:

51min Z�
X
k �K

ck�f (x)

52s:t: g(x)50

53�
i �Dk

Yik

hik(x)50
ck�gik

2
4

3
5 k � K (GDP)

54V(Y )�True

55x � Rn; Yik � fTrue; Falsegm
; ck]0

/ 56/where the discrete choices are expressed with the
/ 57/Boolean variables Yik in terms of disjunctions, and logic

/ 58/propositions V(Y ). The attractive feature of General-

/ 59/ized Disjunctive Programming (GDP) is that it allows a
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/60 /symbolic/quantitative representation of discrete and

/61 /continuous optimization problems. Modeling language

/62 /for GDP problem has been discussed by Vecchietti and

/63 /Grossmann (2000).
/64 / An approach that combines the previous two models

/65 /is a hybrid model proposed by Vecchietti and Gross-

/66 /mann (1999) where the discrete choices can be modeled

/67 /as mixed-integer constraints and/or disjunctions. In this

/68 /way we can potentially exploit the advantages of the two

/69 /previous formulations by expressing part of it only in

/70 /algebraic form, and the other in a symbolic/quantitative

/71 /form. The hybrid formulation is as follows:

72 min Z�
X
k �K

ck�f (x)�dT y

73 s:t: g(x)50

74 r(x)�Ly50

75 Ay]a (PH)

76 �
i �Dk

Yik

hik(x)50

ck�yik

2
4

3
5 k � K

77 V(Y )�True

78 x � Rn; y � f0; 1gq
; Yik � fTrue; Falsegm

; ck]0

/79 /where r (x )�/Ly 5/0 is general mixed-integer constraints

/80 /that can be linear/nonlinear equations/inequalities.

/81 /These terms can be seen as disjunctions transformed

/82 /into mixed-integer form. Ay ]/a represents general
/83 /integer equalities/inequalities transformed from former

/84 /logic propositions.

/85 / An issue that is unclear is how the modeler should

/86 /express the discrete choices, either as a symbolic

/87 /disjunction, or in a mixed-integer form (Bockmayr &

/88 /Kasper, 1998). One possible guideline for this decision is

/89 /the gap between the optimal value of the continuous

/90 /relaxation and the optimal integer value. Since several
/91 /algorithms involve the solution of the relaxed problem,

/92 /we will investigate in this paper the tightness of different

/93 /relaxations for a disjunctive set: the big-M formulation

/94 /(Nemhauser & Wolsey, 1988), the Beaumont surrogate

/95 /(Beaumont, 1990) and the convex hull relaxation (Balas,

/96 /1979; Lee & Grossmann, 2000). The big-M formulation

/97 /and the Beaumont surrogate can be regarded as

/98 /‘obvious’ constraints. However, the convex hull relaxa-
/99 /tion of a disjunction is tighter, and can be transformed

/100 /into a set of mixed-integer constraints. The advantage of

/101 /the convex hull relaxation is that the tight lower bound

/102 /helps to reduce the search effort in the branch and

/103 /bound procedure, in both nonlinear and linear problems

/104 /(for examples of significant node reductions see Lee &

/105 /Grossmann, 2000; Jackson & Grossmann, 2002). But

/106 /the drawback with the convex hull formulation is that it
/107 /increases the number of continuous variables and

/108 /constraints of the original problem. This can potentially

/109 /make a problem more expensive to solve, especially in

/ 110/large problems. The big-M relaxation is more conveni-

/ 111/ent to use when the problem size does not increase

/ 112/substantially when compared with the convex hull

/ 113/relaxation (see Yeomans & Grossmann, 1999, who
/ 114/found the big-M to be more effective). But generally

/ 115/the lower bound by big-M relaxation is weaker, which

/ 116/may require longer CPU time than the convex hull

/ 117/relaxation. Therefore, depending on the case, there is a

/ 118/trade-off between the best possible relaxation and the

/ 119/problem size. In order to exploit the tightness of the

/ 120/convex hull relaxation, but without the substantial

/ 121/increase of the constraints, it will be shown that cutting
/ 122/planes can be used that correspond to a facet of the

/ 123/convex hull.

/ 124/ In this paper we first introduce the definition and

/ 125/properties of a disjunctive set. We then present the

/ 126/different relaxations and their properties. Finally, a

/ 127/cutting plane method is discussed, and illustrated with

/ 128/several small example problems. The goal of this paper

/ 129/is not to perform a detailed computational study, but
/ 130/rather to provide insights into the modeling and solution

/ 131/of disjunctive problems.

/ 132/2. Definitions and properties of a disjunctive set

/ 133/ A disjunctive set F can be expressed as a set of

/ 134/constraints separated by the or (�/) operator:

135F ��
i �D

[hi(x)50] x � Rn (1)

It is assumed that hi (x ) is a continuous convex
/ 136/function. F can be considered as a logical expression,

/ 137/which enforces only one set of inequalities. The feasible

/ 138/region of each disjunctive term can be expressed as the

/ 139/set of points that satisfy the inequality.

140Ri�fx½hi(x)50g (2)

A disjunctive set can be expressed in other forms that

/ 141/are logically equivalent. F can also be expressed as the
/ 142/union of the feasible regions of the disjunctive terms,

/ 143/which is called Disjunctive Normal Form (DNF):

144F �@
i �D

[hi(x)50] x � Rn (3)

145F �@
i �D

Ri (4)

If the union of the feasible regions of the disjunctive

/ 146/terms is equal to one of its terms, Rj , which is the largest

/ 147/feasible region, then the disjunctive set is called im-

/ 148/proper . Otherwise the disjunctive set is called proper

/ 149/(Balas, 1985). The improper disjunctive set can be
/ 150/written as follows:

151F �@
i �D

Ri�Rj (5)

The improper disjunctive set has also the following

/ 152/property:
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153 Ri⁄Rj � i" j (6)

which means that the feasible regions i (i "/j) in the

/154 /disjunctive set F are included in the jth feasible region.

/155 /Since F is expressed as the union of the different terms,

/156 /an improper disjunctive set can be reduced to:

157 F �fx½hj(x)50g (7)

On the other hand, a proper disjunctive set is the one

/158 /in which either the intersection of the feasible regions is

/159 /empty, or else it is non-empty, but Eq. (5) does not

/160 /apply. Therefore, for a proper disjunctive set, either

/161 /there is no intersection among the feasible regions:

162 S
i �D

Ri�¥ (8)

or else, there is some intersection, but no set Rj contains

/163 /all of them:

164 S
i �D

Ri"¥; @
i �D

Ri"Rj (9)

/165 /3. Relaxations of a disjunctive set

/166 / Given a disjunctive set as condition Eq. (1) there are a

/167 /number of relaxations that can be derived, the big-M,

/168 /the Beaumont surrogate and the convex hull relaxations.

/169 /We consider below the case of convex nonlinear con-

/170 /straints, which easily simplifies to the linear case.

/171 /3.1. Big-M relaxation

/172 / Consider the following nonlinear disjunction:

173 F ��
i �D

[hi(x)50] x � Rn (10)

where hi(x ) is a nonlinear convex function. For simpli-

/174 /city, and without loss of generality, it is assumed that
/175 /each term in the disjunction Eq. (10) has only one

/176 /inequality constraint. The big-M relaxation of Eq. (10)

/177 /is given by:

178 hi(x)5Mi(1�yi) i � D

X
i �D

yi�1

05yi51; i � D (11)

Again the tightest value for Mi can be calculated

/179 /from:

180 Mi �maxfhi(x)½xL5x5xUg (12)

/ 181/3.2. Beaumont relaxation

/ 182/ Beaumont (1990) proposed a valid inequality for the

/ 183/disjunctive set Eq. (10). A valid Mi value must be
/ 184/calculated as in Eq. (12). By dividing each constraint i � /

/ 185/D in Eq. (11) by Mi and summing over i � /D , the

/ 186/Beaumont surrogate, which interestingly does not in-

/ 187/volve binary variables is given as follows:

188
X
i �D

hi(x)

Mi

5N�1 (13)

where N�/jD j in Eq. (10). Beaumont showed that Eq.

/ 189/(13) yields an equivalent relaxation as the big-M

/ 190/relaxation Eq. (11) projected onto the continuous x

/ 191/space when the constraints in Eq. (10) are linear.

/ 192/3.3. Convex hull relaxation

/ 193/ The convex hull relaxation for the disjunctive set Eq.

/ 194/(10) can be written as follows (Lee & Grossmann, 2000):

195x�
X
i �D

vi�0 x; vi � Rn

yihi

�
vi

yi

�
50; i � D

X
i �D

yi�1

05yi51 i � D

05vi5vU
i yi; i � D (14)

where vi
U is a valid upper bound for the disaggregated

/ 196/variables vi , usually chosen as xU . The Eq. (14) define a

/ 197/convex set in the (x , v , y) space provided the inequalities

/ 198/hi (x )5/0, i � /D are convex and bounded. The convex

/ 199/hull in Eq. (14) can be proved to be tighter or at least as

/ 200/tight as the big-M relaxation (see Appendix A). Also, for

/ 201/case of linear disjunctions, F ��i �D[aT
i x5bi] x � Rn;

/ 202/Eq. (14) reduces to the equations by Balas (1979, 1988):

203x�
X
i �D

vi�0 x; vi � Rn

aT
i vi�biyi50; i � D

X
i �D

yi�1

05yi51; i � D

05vi5yiv
up
i ; i � D (15)
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/204 /3.4. Example 1

/205 / Consider the following nonlinear disjunction:

206 [(x1�1)2�(x2�1)251]� [(x1�4)2�(x2�2)251]

� [(x1�2)2�(x2�4)251]

/207 /where 05/x15/5 and 05/x25/5. The feasible region is

/208 /shown in Fig. 1. Figs. 2 and 3 show the feasible region of

/209 /the big-M and the convex hull relaxations, respectively.

/210 / The big-M relaxation is given by:

211 (x1�1)2�(x2�1)251�31(1�y1)

(x1�4)2�(x2�2)251�24(1�y2)

(x1�2)2�(x2�4)251�24(1�y3)

y1�y2�y3�1

05x1; x255; 05yi 51; i�1; 2; 3 (16)

where the big-M parameters are calculated by Eq. (12).
/212 /The convex hull of Fig. 3 is given by the equations:

213 x1�v11�v12�v13

x2�v21�v22�v23

(y1�o)

��
v11

y1 � o
�1

�2

�
�

v21

y1 � o
�1

�2

�1

	
50

(y2�o)

��
v12

y2 � o
�4

�2

�
�

v22

y2 � o
�2

�2

�1

	
50

(y3�o)

��
v13

y3 � o
�2

�2

�
�

v23

y3 � o
�4

�2

�1

	
50

y1�y2�y3�1

05yi51; i�1; 2; 3

05vji55yi � i; � j (17)

Note that to avoid division by zero o is introduced in

/ 214/the nonlinear inequalities as a small tolerance (Lee &

/ 215/Grossmann, 2000). Typical values for o are 0.001�/

/ 216/0.0001. From Figs. 2 and 3 it is clear that the convex

/ 217/hull relaxation of the disjunctive set is tighter than the

/ 218/big-M relaxation for this example.

/ 219/4. Impact of nature of disjunctions on relaxations in x
/ 220/space

/ 221/ Our aim in this section is to analyze different types of

/ 222/disjunctions for which it may be convenient or not to

/ 223/transform them into the convex hull formulation or a
/ 224/big-M formulation or Beaumont surrogate. Since the

/ 225/big-M formulation is as tight as the Beaumont surro-

/ 226/gate, and it is more frequently used, we will compare the
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/227 /convex hull with only the big-M formulation. We will

/228 /analyze the following cases: (a) improper disjunction; (b)

/229 /proper disjunction. Within this last case we will analyze

/230 /when the intersection of the feasible regions is empty
/231 /and when it is non-empty.

/232 / If we denote the feasible region of the convex hull

/233 /relaxation in the continuous x space as RCH, the feasible

/234 /region of the big-M relaxation as RBM, and the feasible

/235 /region of the Beaumont surrogate as RB, then according

/236 /to the properties shown in the previous section, the

/237 /following can be established:

238 RCH⁄RBM (18)

Beaumont (1990) has shown for the linear case that

/239 /RBM�/RB where RB is defined by constraint Eq. (13). In

/240 /the Appendix A we show that RBM⁄/RB for nonlinear

/241 /case. Therefore, the following property holds:

242 RBM⁄RB (19)

It should be noted that properties Eqs. (19) and (20)

/243 /apply in the space of the continuous variables x .

/244 /4.1. Improper disjunction

/245 / When the disjunctive set is improper , the property in

/246 /Eq. (6) holds. Since the feasible region of one term
/247 /contains the feasible regions of the other terms, the

/248 /relaxations of the convex hull and of the big-M can be

/249 /selected to be identical. The reason is that the redundant

/250 /terms can be dropped and the disjunctive set can be

/251 /represented by the term with the largest feasible region

/252 /Rj . For example, suppose we have the following

/253 /problem:

254 min Z�(x1�3:5)2�(x2�4:5)2

s:t:
Y1

15x153

25x254

2
4

3
5�

Y2

25x153

35x254

2
4

3
5 (20)

The feasible region is shown in Fig. 4. Choosing the

/ 255/term with the largest feasible region, which is the first

/ 256/one, and solving the problem as an NLP we obtain the

/ 257/optimal solution x�/(3,4) and Z�/0.5. If we are not
/ 258/aware that the feasible regions are overlapped we can

/ 259/generate the big-M relaxation for this problem. If we use

/ 260/Mi �/0.5, i�/1, 2, and solve the relaxed Mixed-Integer

/ 261/Non-Linear Programming (MINLP) problem, the solu-

/ 262/tion is x�/(3.25,4.25), Z�/0.125, y�/(0.5,0.5). If we

/ 263/choose Mi �/1 and solve the relaxed MINLP then the

/ 264/solution is x�/(3.5,4.5), Z�/0, y�/(0.5,0.5). Therefore,

/ 265/it is clear that arbitrary choice of Mi can yield a
/ 266/relaxation whose feasible region is larger than the

/ 267/disjunctive term with the largest feasible region. For

/ 268/the convex hull formulation it is clear that the resulting

/ 269/relaxation coincides with the region of the largest term

/ 270/in the x space, but at the expense of expressing it

/ 271/through disaggregated variables and additional con-

/ 272/straints.

/ 273/4.2. Proper disjunction

/ 274/4.2.1. Non-empty intersecting feasible regions

/ 275/ When the feasible regions of the disjunctive terms

/ 276/have an intersection, it is not clear whether or not the

/ 277/convex hull and the big-M formulation could yield the

/ 278/same relaxation. Suppose we have disjunctions whose

/ 279/feasible regions are shown in Figs. 5 and 6. In Fig. 5 it is
/ 280/clear that the big-M relaxation, with a good selection of

/ 281/the Mi values can yield the same relaxation as the

/ 282/convex hull. For the case of Fig. 6 the convex hull will

/ 283/yield a tighter relaxation.

/ 284/4.2.2. Disjoint disjunction

/ 285/ If the feasible region defined by each term in the

/ 286/disjunction has no intersection with others, then the
/ 287/disjunction is disjoint and proper . Fig. 7 shows an

/ 288/example of disjoint disjunction. In this case, it is clear

/ 289/that the convex hull relaxation should generally be

y:/Elsevier Science/Shannon/Cace/articles/Cace2364/CACE2364.3d[x] 24 October 2002 12:55:47
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/290 /tighter than the big-M relaxation (an exception is the

/291 /particular case shown in Fig. 8). Also, in the special case

/292 /shown in Fig. 9, where a disjunction has two terms with

/293 /linear constraints and one of them yields zero point as a

/294 /feasible region, the convex hull yields a cone with the

/295 /zero point as the vertex. In this case, the convex hull

/296 /relaxation can be simplified by not requiring disaggre-

/297 /gated variables as given by the following:

298y1h1

�
x

y1

�
50

05x5xU y1

05y151 (21)

which includes the zero point as a feasible point. The

/ 299/above also applies to linear case.

/ 300/5. Relaxation in x �/y space

/ 301/ The previous section analyzed the relation of relaxa-
/ 302/tions for different types of disjunctions in the x space.

/ 303/When applying the big-M constraints Eq. (11) or the

/ 304/convex hull Eq. (14) these are written in the x �/y space.

/ 305/Therefore, an interesting question is whether or not the

/ 306/properties we noted in the previous section still apply in

/ 307/the x �/y space. Let us consider the following example,

/ 308/which has an improper disjunction.

/ 309/5.1. Example 2
/ 310/

311min Z�(x1�1:1)2�(x2�1:1)2�c1

s:t:
Y1

x2
1�x2

251

c1�1

2
4

3
5�

�Y1

x1�x2�0

c1�0

2
4

3
5

05x1; x251; 05c1

Y1 � ftrue; falseg (22)

The optimal solution is x�/(0.707,0.707), Y1�/true

/ 312/and Z�/1.309. The feasible region is shown in Fig. 10

/ 313/and the feasible region of the second term, which is (0,0),

/ 314/is included in the feasible region of the first term.
/ 315/According to the previous section since this is an

/ 316/ improper disjunction in the x space, it ought to be

/ 317/sufficient to use the first term only. However, when

y:/Elsevier Science/Shannon/Cace/articles/Cace2364/CACE2364.3d[x] 24 October 2002 12:55:48

Fig. 6. Intersecting disjunction.

Fig. 7. Disjoint disjunction (general case).

Fig. 8. Disjoint disjunction (particular case).

Fig. 9. Disjoint disjunction with zero point.
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/318 /expressed algebraically, the big-M relaxation and the

/319 /convex hull relaxation of the disjunction in Eq. (23)

/320 /involve the additional variable y1 as a continuous

/321 /variable. In the case of the convex hull, we apply Eq.

/322 /(22) to the first term. Rearranging the inequality y1[(x1/

/323 /y1)2�/(x2/y1)2�/1]5/0 yields:

324 min Z�(x1�1:1)2�(x2�1:1)2�y1

s:t: x2
1�x2

25y2
1

05x15y1

05x25y1

05y151 (23)

The big-M relaxation of Eq. (23) for the first term is

/325 /given by:

326 min Z�(x1�1:1)2�(x2�1:1)2�y1

s:t: x2
1�x2

25y1

05x1; x251; 05y151 (24)

Figs. 11 and 12 show the convex hull relaxation and

/327 /the big-M relaxation of Eq. (23) in the x �/y space,

/328 /respectively. It is clear that Eqs. (24) and (25) are not

/329 /identical due to the difference in the right hand side of
/330 /the nonlinear inequality. In fact, the solution of Eq. (24)

/331 /is (x , y)�/(0.707, 0.707, 1) and Z�/1.309. Since the

/332 /relaxed value of y1 is 1, this solution is the optimal

/333 /solution of Eq. (33), which is also shown in Fig. 11. On

/334 /the other hand, the solution of Eq. (25) is (x , y )�/(0.55,

/335 /0.55, 0.605) and Z�/1.21 which is weaker than the

/336 /convex hull relaxation. This result can be seen by

/337 /comparing Figs. 11 and 12. There is no difference
/338 /between the feasible set of Eq. (24) and the feasible set

/339 /of Eq. (25) projected in the x space as shown in Fig. 10.

/340 /The difference, however, takes place in the x �/y space.

/341 /Note that the nonlinear constraint in Eq. (25), x1
2�/x2

25/

/ 342/y1, which is shown in Fig. 12, is weaker than x1
2�/x2

25/y1
2

/ 343/in Eq. (24) for 05/y15/1. Therefore, even though the

/ 344/disjunction in Eq. (23) is improper in x space, the convex

/ 345/hull yields tighter relaxation than big-M relaxation in

/ 346/the x �/y space. Thus, this example demonstrates that for

/ 347/the case of improper nonlinear disjunctions, the convex

/ 348/hull may be tighter than the big-M constraint in the x �/y

/ 349/space even if they are identical in the projected x space.

/ 350/ For the linear case, we change the nonlinear con-
/ 351/straint in the first term of the disjunction Eq. (23) by the

/ 352/following linear constraint:

353min Z�(x1�1:1)2�(x2�1:1)2�c1

s:t:
Y1

x1�x251

c1�1

2
4

3
5�

�Y1

x1�x2�0

c1�0

2
4

3
5

05x1; x251; 05c1

Y1 � ftrue; falseg (25)

where the disjunction is improper in the x space. The

/ 354/optimal solution is x�/(0.5,0.5), Y1�/true and Z�/1.72.
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Fig. 10. Feasible region of example 2 in the x space.
Fig. 11. Convex hull relaxation of example 2 in the x �/y space.

Fig. 12. Big-M relaxation of example 2 in the x �/y space.
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/355 /The convex hull of the disjunction Eq. (26) yields a

/356 /linear constraint:

357 x1�x25y1 (26)

After replacing the disjunction Eq. (26) with convex

/358 /hull relaxation Eq. (27), the solution is x�/(0.5,0.5),

/359 /y1�/1 and Z�/1.72, which is exactly the optimal

/360 /solution of Eq. (26). Since the disjunction Eq. (26) is

/361 / improper in x space, only the first term is sufficient for

/362 /the relaxation. The big-M relaxation of Eq. (26) is given

/363 /by:

364 x1�x2�15M1(1�y1) (27)

This relaxation clearly depends on M1 value. For

/365 /example, if M1�/1 is used, then the relaxation yields

/366 /x�/(0.67,0.67), y1�/0.67 and Z�/1.042, which is weaker

/367 /than the convex hull relaxation. The best M1 value in

/368 /this case is �/1, which yields exactly the same solution as
/369 /the convex hull relaxation. As shown with this example,

/370 /even for the linear improper disjunction the big-M

/371 /relaxation may have weaker relaxation than the convex

/372 /hull depending on the big-M parameter value.

/373 /6. Cutting plane method

/374 / The two previous sections have analyzed the issue of

/375 /determining in what cases it is worth to formulate

/376 /disjunctions with the convex hull relaxation in order to

/377 /obtain tighter relaxations when compared with the big-
/378 /M relaxation. In this section, we present a numerical

/379 /procedure for generating cutting planes, which poten-

/380 /tially has the advantage of requiring much fewer

/381 /variables and constraints than the convex hull relaxa-

/382 /tion. Cutting planes, which correspond to facets of the

/383 /convex hull, can improve the tightness of the big-M

/384 /relaxation. The proposed cutting planes can be used

/385 /within a branch and cut enumeration procedure (Stubbs
/386 /& Mehrotra, 1999), or as a way to strengthen an

/387 /algebraic MINLP model before solving it with one of

/388 /the standard methods.

/389 / Using as a basis the GDP model, the general form of

/390 /the strengthened MINLP model (PCn ) at any iteration n

/391 /will be as follows:

392 min Z�
X
k �K

X
i �Dk

gikyik�f (x)

393 s:t: g(x)50

394 hik(x)5Mik(1�yik); i � Dk; k � K (PCn)

395
X
i �Dk

yik�1; k � K

396 Ay5a

397 bT
n x5bn; n�1; 2; . . . ; N

398 x � Rn; yik � f0; 1g

/ 399/where bn
Tx 5/bn is the cutting plane at the iteration n .

/ 400/Let us denote the solution of the continuous relaxation

/ 401/of (PCn ) as xR
BM,n . In order to generate the cutting plane

/ 402/we consider the following separation problem, which
/ 403/has as an objective to find the point within the convex

/ 404/hull that is closest to the point xR
BM,n . This separation

/ 405/problem is given by the NLP:

406min f(x)� (x�xBM;n
R )T (x�xBM;n

R )

407s:t: g(x)50

408x�
X
i �Dk

vik; k � K

409yikhik

�
vik

yik

�
50; i � Dk; k � K (SPn)

410
X
i �Dk

yik�1; k � K

411Ay5a

412bT
n x5bn; n�1; 2; . . . ; N

413x; vik � Rn; 05yik51

/ 414/ Let the solution of the separation problem (SPn ) be

/ 415/xS,n . A cutting plane bn
Tx 5/bn can then be obtained

/ 416/from:

417(xS;n�xBM;n
R )T (x�xS;n)]0 (28)

where the coefficient of x is a subgradient of the

/ 418/objective function of (SPn ) at xS,n (for derivation, see

/ 419/Stubbs & Mehrotra, 1999). Fig. 13 shows an example of

/ 420/a cutting plane generated with the points xS,n and xR
BM,n .

/ 421/ The cutting plane method can then be stated as

/ 422/follows:

/ 423/1) Solve continuous relaxation of (PCn).

/ 424/2) Solve separation problem (SPn).

/ 425/ a) If jjxS,n�/xR
BM,n jj5/o , stop.

y:/Elsevier Science/Shannon/Cace/articles/Cace2364/CACE2364.3d[x] 24 October 2002 12:55:52

Fig. 13. Cutting plane generated by separation problem.
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/426 / b) Else set bn�1�/�/(xS,n�/xR
BM,n ) and bn�1�/

/427 /�/(xS,n�/xR
BM,n)xS,n . Set n�/n�/1, return to

/428 /Step 1.

/429 / This procedure can be used either in Branch and Cut

/430 /enumeration method where a special case is to solve the

/431 /separation problem only at the root node, or else it can

/432 /be used to strengthen the MINLP model before apply-

/433 /ing methods such as Outer-Approximation (OA), Gen-

/434 /eralized Benders Decomposition (GBD), and Extended

/435 /Cutting Plane (ECP). It is also interesting to note that

/436 /cutting planes can be derived in the x �/y space. In

/437 /example 2, when we consider the cutting plane in the x

/438 /space, the big-M relaxation solution, x�/(0.55, 0.55)

/439 /cannot be separated from the convex hull since it is

/440 /feasible to the convex hull onto the x space. But when

/441 /we consider the cutting plane in the x �/y space, then the

/442 /big-M relaxation solution, (x , y )�/(0.55, 0.55, 0.605)

/443 /can be separated from the convex hull since this point is

/444 /infeasible to the convex hull relaxation Eq. (24). This

/445 /suggests that the application of cutting planes in the x �/

/446 /y space may be more effective than in the x space only

/447 /for cutting off the big-M relaxation point from the

/448 /convex hull.

/449 / Another application of the separation problem is for

/450 /deciding whether it is advantageous or not to use the

/451 /convex hull formulation. If the value of jjxS,n�/xR
BM,n jj is

/452 /large, then it is an indication that this is the case. A small

/453 /difference between xS,n and xR
BM,n would indicate that it

/454 /might be better to use the big-M relaxation.

/455 / It should be also noted that the proposed cutting

/456 /plane method can be extended to nonconvex disjunctive

/457 /constraints using the global optimization procedure by

/458 /Lee and Grossmann (2001). In this method the non-

/459 /convex constraints are replaced by convex under/over-

/460 /estimators, with which the convex hull relaxation or big-

/461 /M relaxation can be used. Therefore, one can use the

/462 /cutting plane method to tighten the relaxation of the

/463 /bounding convex constraints.

/464 /7. Disjunctive programming examples

/465 / In this section we present a number of examples to

/466 /illustrate the application of the main concepts in this

/467 /paper.

/468 /7.1. Example 3
/469 /

470 min Z�(x1�6)2�(x2�4)2

s:t:

Y1

(x1�4)2�(x2�2)250:5

� 	

�
Y2

(x1�3)2�(x2�4)2
51

� 	

�
Y3

(x1�1)2�(x2�1)251:5

� 	

05x1; x255 (29)

The feasible region is shown in Fig. 14. Note that the

/ 471/point (6,4), which is the minimizer of the objective

/ 472/function, lies outside the convex hull of the disjunction.

/ 473/The optimal solution is x�/(4,4), Z�/4.0, Y�/(false,

/ 474/true, false).

/ 475/ To illustrate the cutting plane procedure, first we

/ 476/solve the big-M relaxation of Eq. (30) with M�/(19.5,

/ 477/24, 30.5) from Eq. (12). The solution is xBM�/(5, 4),
/ 478/ZBM�/1.0, yBM�/(0.209, 0.561, 0.230). Then we solve

/ 479/the separation problem (SPn ) with the relaxation point

/ 480/xBM�/(5, 4):

481min Z�(x1�5)2�(x2�4)2

s:t: x1�v11�v12�v13

x2�v21�v22�v23

(y1�o)

��
v11

y1 � o
�4

�2

�
�

v21

y1 � o
�2

�2

�0:5

	
50

(y2�o)

��
v12

y2 � o
�3

�2

�
�

v22

y2 � o
�4

�2

�1

	
50

(y3�o)

��
v13

y3 � o
�1

�2

�
�

v23

y3 � o
�1

�2

�1:5

	
50

y1�y2�y3�1

05yi51; i�1; 2; 3
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Fig. 14. Feasible region of example 3.
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05vji55yi � i; � j

05x1; x255 (30)

The solution of problem Eq. (31) is xS�/(4.16, 3.70)
/482 /with the objective value of 0.791. Therefore, the cutting

/483 /plane is given as follows:

484
4:16�5:0
3:70�4:0

� 	T
x1�4:16
x2�3:70

� 	
]0 (31)

which can be simplified as �/0.84(x1�/4.16)�/0.3(x2�/

/485 /3.70)]/0. We add Eq. (32) to the big-M relaxation

/486 /and solve it again. The solution of this augmented big-M

/487 /relaxation is xCP�/(4.27, 3.4), ZCP�/3.37, yCP�/(0.294,

/488 /0.676, 0.029). For comparison, we solve the convex hull

/489 /relaxation, obtaining xCH�/(4.27, 3.4), ZCH�/3.37,
/490 /yCH�/(0.442, 0.558, 0). Note that the solution xCP and

/491 /the objective value ZCP are identical to xCH and ZCH.

/492 /The difference in (xBM, ZBM) and (xCH, ZCH) is a clear

/493 /indication that the convex hull is significantly tighter

/494 /than big-M relaxation. For this example, only one

/495 /cutting plane yields the same tightness of the relaxation

/496 /as the convex hull. The numerical results are shown in

/497 /Table 1. Note that the big-M relaxation yields the lowest
/498 /objective value to the optimal solution, 4.0. Fig. 15

/499 /shows the convex hull and cutting plane. As shown in

/500 /Fig. 15, the cutting plane is a facet of the convex hull.

/501 /From Table 1 it can be seen that the big-M relaxation

/502 /with a cutting plane yields a competitive relaxation

/503 /compared with the convex hull.

/504 /7.2. Cutting planes in x �/y space: example 2

/505 / Let us revisit example 2. If we apply the separation
/506 /problem (SPn ) to the big-M relaxation solution xR

BM�/

/507 /(0.55,0.55), the objective value of the separation pro-

/508 /blem is zero since xR
BM is feasible to the convex hull

/509 /relaxation of Eq. (23) in the x space. However, if we

/510 /treat the binary variable y as continuous variable and

/511 /then extend the dimension of the solution to the x �/y

/512 /space, we have the following separation problem with

/513 /(x , y)R
BM�/(0.55, 0.55, 0.605):

514 min Z� [(x1�0:55)2�(x2�0:55)2�(y1�0:605)2]

515 s:t:

516 x2
1�x2

25y2
1 (SP1)

51705x15y1

51805x25y1

51905y151

/ 520/ The solution is Z�/0.015 and (x , y)S�/(0.489, 0.489,

/ 521/0.691), which means that (x , y )R
BM is infeasible in the

/ 522/convex hull relaxation Eq. (24) in the x �/y space. The

/ 523/cutting plane is now given by (0.489�/0.55)(x1�/0.489)�/

/ 524/(0.489�/0.55)(x2�/0.489)�/(0.691�/0.605)(y1�/0.691)]/

/ 525/0.When this cutting plane is added to the big-M

/ 526/relaxation Eq. (25), the optimal solution is (x , y )�/

/ 527/(0.707, 0.707, 1) and Z�/1.309, which is identical to
/ 528/the solution of the convex hull relaxation Eq. (24) and is

/ 529/also the optimal solution of Eq. (23). This shows that the

/ 530/cutting plane method applied to the x �/y space can yield

/ 531/tighter relaxations than the cutting plane in the x space

/ 532/only.

/ 533/7.3. Example 4

/ 534/ Consider the synthesis of a process network (Türkay

/ 535/& Grossmann, 1996) where the following disjunctive set

/ 536/is used to model the problem:

537

Yk

hik(x)�0

ck�gk

2
4

3
5�

�Yk

Bikx�0

ck�0

2
4

3
5 i � Dk; k � K (32)

It means that if the k th unit is selected (Yk �/true)

/ 538/then the first term of the disjunction applies, if it is not

/ 539/(�/Yk) then a subset of the x variables is set to zero.

y:/Elsevier Science/Shannon/Cace/articles/Cace2364/CACE2364.3d[x] 24 October 2002 12:55:55

Table 1

Comparisons of the relaxations for example 3

Relaxation M x1 x2 y1 y2 y3 Z

Big-M (19.5, 24, 30.5) 5.0 4.0 0.209 0.561 0.023 1.0

Convex hull �/ 4.27 3.40 0.442 0.558 0.0 3.37

Cutting plane �/ 4.27 3.40 0.294 0.676 0.029 3.37

Optimal solution �/ 4.0 4.0 0 1 0 4.0

Fig. 15. Convex hull and cutting plane for example 3.
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/541 /has eight units. The corresponding GDP model is as
/542 /follows:

543 min Z�
X8

k�1

ck�aT x�122

/544 /s.t. Mass balances:

545 x1�x2�x4; x6�x7�x8

546 x3�x5�x6�x11

547 x11�x12�x15; x13�x19�x21

548 x9�x16�x25�x17

549 x20�x22�x23; x23�x14�x24

/550 / Specifications:

551 x10�0:8x1750; x10�0:4x17]0

552 x12�5x1450; x12�2x14]0

/553 / Disjunctons:

554

Y1

exp(x3)�1�x250

c1�5

2
4

3
5�

�Y1

x3�x2�0

c1�0

2
4

3
5

Y2

exp

�
x5

1:2

�
�1�x450

c2�5

2
664

3
775�

�Y2

x4�x5�0

c2�0

2
4

3
5

Y3

1:5x9�x10�x8�0

c3�6

2
4

3
5�

�Y3

x9�0; x8�x10

c3�0

2
4

3
5

Y4

1:25(x12�x14)�x13�0

c4�10

2
4

3
5�

�Y4

x12�x13�x14�0

c4�0

2
4

3
5

Y5

x15�2x16�0

c5�6

2
4

3
5�

�Y5

x15�x16�0

c5�0

2
4

3
5

Y6

exp

�
x20

1:5

�
�1�x1950

c6�7

2
664

3
775�

�Y6

x19�x20�0

c6�0

2
4

3
5

Y7

exp(x22)�1�x2150

c7�4

2
4

3
5�

�Y7

x21�x22�0

c7�0

2
4

3
5

Y8

exp(x18)�1�x10�x1750
c8�5

2
4

3
5�

�Y8

x10�x17�x18�0
c8�0

2
4

3
5

(33)

Logic propositions:

556Y1[/Y3�/Y4�/Y5 Y5[/Y8

557Y2[/Y3�/Y4�/Y5 Y6[/Y4

558Y3[/Y1�/Y2 Y7[/Y4

559Y3[/Y8 Y8[/Y3�/Y5�/(�/Y3ffl/�/Y5)

560Y4[/Y1�/Y2 Y1
/Y2

561Y4[/Y6�/Y7 Y4
/Y5

562Y5[/Y1�/Y2 Y6
/Y7

/ 563/ Problem data:
/ 564/ aT �/(a1�/0, a2�/10, a3�/1, a4�/1, a5�/�/15, a6�/0,

/ 565/a7�/0, a8�/0, a9�/�/40, a10�/15, a11�/0, a12�/0, a13�/

/ 566/0, a14�/15, a15�/0, a16�/0, a17�/80, a18�/�/65, a19�/

y:/Elsevier Science/Shannon/Cace/articles/Cace2364/CACE2364.3d[x] 24 October 2002 12:55:58

Fig. 16. Process superstructure of example 4.
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/567 /25, a20�/�/60, a21�/35, a22�/�/80, a23�/0, a24�/0,

/568 /a25�/�/35); xj
lo�/0, �/j .

/569 / Before introducing the big-M relaxation, it should be

/570 /noted that in the disjunctions we have the following
/571 /properties:

/572 /i) The disjunctions are improper since the feasible
/573 /region of the second term belongs to the feasible

/574 /region of the first term in x space (except the cost

/575 /term).

/576 /ii) In the second term of the disjunctions a subset of

/577 /the continuous variables x are zero.

/578 /iii) No continuous variable x is repeated in the second

/579 /term (�/Yk) of the disjunctions.

/580 / Because of these properties, it is possible to rewrite the

/581 /disjunctions as follows:

582 exp(x3)�1�x250

583 exp

�
x5

1:2

�
�1�x450

584 1:5x9�x10�x8�0

585 1:25(x12�x14)�x13�0

586 x15�2x16�0

587 exp

�
x20

1:5

�
�1�x1950

588 exp(x22)�1�x2150

589 exp

�
x18

1:5

�
�1�x10�x1750

/590 / Disjunctions:

591

Y1

05x25x
up
2

05x35x
up
3

c1�5

2
664

3
775�

�Y1

x3�x2�0

c1�0

2
4

3
5

Y2

05x45x
up
4

05x55x
up
5

c2�5

2
664

3
775�

�Y2

x4�x5�0

c2�0

2
4

3
5

Y3

05x95x
up
9

c3�6

2
4

3
5�

�Y3

x9�0

c3�0

2
4

3
5

Y4

05x125x
up
12

05x135x
up
13

05x145x
up
14

c4�10

2
66664

3
77775�

�Y4

x12�x13�x14�0

c4�0

2
4

3
5

Y5

05x155x
up
15

05x165x
up
16

c5�6

2
664

3
775�

�Y5

x15�x15�0

c5�0

2
4

3
5

Y6

05x195x
up
19

05x205x
up
20

c6�7

2
664

3
775�

�Y6

x19�x20�0
c6�0

2
4

3
5

Y7

05x215x
up
21

05x225x
up
22

c7�4

2
664

3
775�

�Y7

x21�x22�0

c7�0

2
4

3
5

Y8

05x105x
up
12

05x175x
up
13

05x185x
up
14

c8�5

2
66664

3
77775�

�Y8

x10�x17�x18�0

c8�0

2
4

3
5 (34)

It should be noted that constraints Eq. (35) consist of

/ 592/global constraints (nonlinear) and disjunctions (linear).

/ 593/The convex hull of the above disjunctions can be

/ 594/reduced to linear constraints for the big-M relaxation

/ 595/which are given by:

59605xj 5x
up
j yk; j � J; k � K (35)

597ck�gkyk; k � K

59805yk51; k � K

/ 599/which means that if the first term of the disjunction is

/ 600/true (yk �/1) then the continuous variables xj can have a

/ 601/value between its bounds and the fixed cost is activated,

/ 602/else if the second term is true (yk �/0) then the

/ 603/continuous variables become zero that still satisfies the

/ 604/global constraints (condition i).
/ 605/ The GDP problem Eq. (34) is solved with the convex

/ 606/hull relaxation. The upper bounds used are x3
up�/2,

/ 607/x5
up�/2, x9

up�/2, x10
up�/1, x14

up�/1, x17
up�/2, x19

up�/2, x21
up�/

/ 608/2, x25
up�/3, and for the rest of the variables, xj

up�/6.5.

/ 609/The objective function value Z�/64.8 was obtained

/ 610/from the convex hull relaxation, and the corresponding

/ 611/NLP requires 0.07 CPU s with CONOPT/GAMS.

/ 612/Applying the big-M relaxation to the modified GDP
/ 613/formulation Eq. (35) and the same bounds, we obtained

/ 614/Z�/49.9 as the solution value. Therefore, the convex

/ 615/hull relaxation of the original GDP model yields a much

/ 616/tighter lower bound. The difference between these two

/ 617/relaxation values comes from the fact that the feasible

/ 618/region by the convex hull relaxation of nonlinear

/ 619/disjunctions Eq. (34) in the x �/y space is tighter than

/ 620/the feasible region by big-M relaxation of Eq. (35).
/ 621/However, it should be noted that their projections onto

/ 622/the x space are identical since the disjunctions are

/ 623/ improper . If the disjunctions are linear, then both
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/624 /relaxations can be identical in the x �/y space if appro-

/625 /priate big-M parameters are used.

/626 / Since the convex hull relaxation yields a significant

/627 /increase in the number of additional constraints and
/628 /variables, we consider the generation of cutting planes

/629 /to strengthen the big-M relaxation. As outlined in

/630 /Section 6, a separation problem is solved. And the

/631 /solution of the separation problem is used to build a

/632 /cutting plane as in example 4. The big-M relaxation of

/633 /Eq. (35) is then solved again with this cutting plane.

/634 /Since the cutting plane is a facet of the convex hull, it

/635 /will tighten the lower bound. Table 2 shows the increase
/636 /of the lower bound as cutting planes are added to the

/637 /big-M relaxation. The first column shows the number of

/638 /cutting planes added. The second column shows the

/639 /relaxation value. Note that the optimal solution of

/640 /example 4 is 68.01. The third column shows the objective

/641 /value of the separation problem. As more cutting planes

/642 /are added, the objective value of the separation problem

/643 /decreases, implying that the solution point of the
/644 /augmented big-M relaxation gets closer to the convex

/645 /hull. The fourth column shows the CPU time of

/646 /separation problem. The fifth and sixth column show

/647 /the MINLP solution results by DICOPT�/�/ with the

/648 /corresponding cuts. In all cases, the optimal solution is

/649 /found in the second major iteration. Since this problem

/650 /is a convex MINLP, the Outer-Approximation (OA)

/651 /algorithm stops when the crossover occurs. The CPU
/652 /time is less than 1 s on a Pentium III PC 600 MHz with

/653 /128 Mbytes RAM memory. After adding seven cutting

/654 /planes, the lower bound improved significantly com-

/655 /pared with the case when no cutting plane is used (62.5

/656 /vs. 49.9). The advantage of the cutting plane method is

/657 /that only one linear constraint is added to the big-M

/658 /relaxation at each step. However, there is a cost for

/659 /building a cutting plane and that is to solve a separation
/660 /problem, which is a convex NLP problem (SPn).

/661 /7.4. Example 5

/662 / To illustrate the application of the cutting plane

/663 /method with a branch and bound algorithm, we have

/664 /constructed the following GDP problem with linear/

/ 665/nonlinear proper disjunctions.

666min Z�
X9

k�1

ck�aT x

667�0:6 log(x12�1)�0:8(x13�8)2�0:7 exp(�x14�1)

�0:5 log(x15�2)

/ 668/s.t. Mass balances:

669x1�x5�x6; x4�x7�x8

670x10�x19�x20; x11�x17�x18

671x14�x21�x22; x9�x23�x24

672x12�x25�x26

/ 673/ Specifications:

674x1�x2�x3�x4530

675x9�x10�x11525

676x12�x13�x14�x15�x16520

677

Y1

x951:7 log(x2�x5�1)

x9]0:1�0:2x5

x5]2x2

c1�2

2
66664

3
77775�

�Y1

x2�x5�x9�0

c1�0

2
4

3
5

Y2

x10�0:9x3�0:8x7

15x3�x7

x7]x3

c2�1

2
66664

3
77775�

�Y2

x3�x7�x10�0

c2�0

2
4

3
5

Y3

1:5x11�x6�x8

x6�x8

x11]1

c3�9

2
66664

3
77775�

�Y3

x6�x8�x11�0

c3�0

2
4

3
5

Y4

x255 log(x23�1)�0:1
x25]1

c4�1:5

2
664

3
775�

�Y4

x23�x25�0

c4�0

2
4

3
5
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Table 2

Numerical results of cutting plane method for example 4

Number of cutting planes Big-M relaxation Separation problem solution Separation CPU (s) DICOPT�� major iterations CPU (s)

0 49.9 0.545 0.043 2 0.139

1 51.7 0.701 0.078 2 0.129

2 52.2 0.576 0.078 2 0.121

3 53.2 0.163 0.027 2 0.139

4 61.2 0.010 0.039 2 0.248

5 61.9 0.004 0.051 2 0.151

6 62.4 0.005 0.051 2 0.143

7 62.5 0.002 0.051 2 0.157
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Y5

x2651:5 log(x24�1)

x26]1

c5�4

2
664

3
775�

�Y5

x24�x26�0

c5�0

2
4

3
5

Y6

(x17�4)2�(x21�4)2
512

x21]1
c6�3:7

2
664

3
775�

�Y6

x17�x21�0

c6�0

2
4

3
5

Y7

x1357�1:2(x20�3)2

x2258�(x20�3)2

x20]1

c7�7:4

2
66664

3
77775�

�Y7

x13�x20�x22�0

c7�0

2
4

3
5

Y8

x1551:2 log(x19�2)

x15]1�0:2x19

x19]1

c8�6:5

2
66664

3
77775�

�Y8

x15�x19�0

c8�0

2
4

3
5

Y9

x16�x18]5

x1656�2 log(x18�1)

x18]1

c9�5:2

2
66664

3
77775�

�Y9

x16�x18�0

c9�0

2
4

3
5 (36)

Logic proposition:

678 Y1�Y2�Y3

679 �(Y1fflY2fflY3)

680 �Y4��Y5

681 Y1[Y4�Y5

682 Y4[Y1

683 Y5[Y1

684 Y2[Y7�Y8

685 Y3[Y6�Y9

686 Y6[Y3

687 �Y8��Y9

688 Y9[Y3

689 [Y4�Y5][ [Y7�Y8�Y9]

690 [�Y4ffl�Y5][ [Y7fflY8]� [Y8fflY9]� [Y7fflY9]

691 05xj 59 j�1; . . . ; 26; 05ck; Yk � ftrue; falseg;
k�1; . . . ; 9

/692 / The optimal solution is Z�/�/197.3,

/693 /Y2,Y3,Y6,Y7,Y9�/true and x�/(1.15,0,1.56, 2.72,0,

/694 /1.15,1.56,1.15,0,2.67,1.53,0,6.87,9,0,7.38,0.53,1,0,2.67,

/695 /4.02,4.98,0,0,0,0). The big-M relaxation of Eq. (36)

/696 /yields a lower bound of �/326.4. The convex hull
/697 /relaxation of problem Eq. (36) yields a lower bound of

/698 /�/209. Table 3 shows the results of cutting plane method

/699 /applied to big-M relaxation of Eq. (36). As more cutting

/700 /planes are added, the lower bound of big-M relaxation

/ 701/increases and the objective value of the separation

/ 702/problem decreases. After adding ten cutting planes, the
/ 703/lower bound significantly improved (�/219.7). Table 4

/ 704/shows the branch and bound search results when cutting

/ 705/planes are added before starting the branch and bound

/ 706/search. First, the big-M MINLP problem is solved with

/ 707/branch and bound search. Nineteen nodes are searched

/ 708/and the optimal solution �/197.3 is found. Secondly,

/ 709/four cutting planes are added to big-M MINLP problem

/ 710/at the root node of branch and bound tree. Note that the
/ 711/relaxation value, which is the objective value at the root

/ 712/node, is �/239.5 and 13 nodes are searched to find the

/ 713/optimal solution. The decrease in the number of search

/ 714/nodes is due to the tighter relaxation value. When eight

/ 715/cutting planes are added, the relaxation value is �/221.4

/ 716/and only seven nodes are searched. For comparison, the

/ 717/convex hull relaxation of Eq. (36) is solved and the

/ 718/number of nodes is seven, which is same as in the case of
/ 719/eight cutting planes. The CPU time for each case is also

/ 720/shown in Table 4 and less CPU time is spent with fewer

/ 721/number of nodes. The CPU time for generating eight

/ 722/cutting planes is about 2 s. This example clearly shows

/ 723/that the cutting planes can tighten the relaxation and

/ 724/thus reduce the number of search nodes in branch and

/ 725/bound method. Although the example presented is

/ 726/rather small, the proposed cutting plane method should
/ 727/be promising for solving larger problems. This will be

/ 728/the subject of our future work.

/ 729/8. Conclusions

/ 730/ The purpose of this paper has been to analyze the

/ 731/different alternatives of modeling the discrete choices as

/ 732/disjunctions or as mixed-integer (0�/1) inequalities, in

/ 733/order to provide guidelines on this decision. The
/ 734/resulting model can correspond to one of the three

/ 735/formulations: mixed-integer constraints (PA), disjunc-

/ 736/tive constraints (GDP) or hybrid (PH). For the analysis,

y:/Elsevier Science/Shannon/Cace/articles/Cace2364/CACE2364.3d[x] 24 October 2002 12:56:3

Table 3

Numerical results of cutting plane method for example 5

Number of cutting

planes

Big-M relaxation

solution

Separation problem

solution

0 �326.4 91.2

1 �265.6 5.97

2 �255.8 9.76

3 �245.5 7.12

4 �239.5 4.34

5 �238.0 4.35

6 �224.4 2.39

7 �223.4 1.31

8 �221.4 0.91

9 �220.8 0.25

10 �219.7 0.19

Convex hull relaxation �209.0 0
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/737 /we considered three different possible relaxations of a

/738 /disjunctive set, the convex hull, the big-M relaxation and

/739 /the Beaumont surrogate. The analysis was performed

/740 /mainly on the first two since the big-M formulation is

/741 /widely used.

/742 / Although it was proved that the convex hull relaxa-

/743 /tion yields a tighter relaxation than the traditional 0�/1

/744 /big-M relaxation, there are several cases when the big-M

/745 /relaxation can compete with the convex hull relaxation.

/746 /As a general rule, the big-M model is competitive when

/747 /good bounds can be provided for the variables, and for

/748 /large problems where it is important to keep the number

/749 /of equations and variables as small as possible. For

/750 /convex improper disjunction both the convex hull and

/751 /the big-M model give the same relaxation in the x space,

/752 /but this may not be true in the x �/y space as was

/753 /demonstrated with examples. For proper disjunctions

/754 /where the feasible regions have some intersection, the

/755 /objective function plays an important role, if the

/756 /minimizer of the objective function is inside the feasible

/757 /region of the disjunctive set, both the big-M and the

/758 /convex hull relaxation may yield the same relaxation

/759 /value. Otherwise the convex hull should be generally

/760 /better, but the big-M constraints with appropriate

/761 /bounds can be competitive. For proper disjunctions

/762 /with an empty intersection on the feasible regions

/763 /(disjoint terms) the convex hull is generally better than

/764 /the big-M relaxation. Although these conclusions are

/765 /not general, we believe they help to provide some insight

/766 /in the modeling of discrete/continuous optimization

/767 /problems.

/768 / Finally, to address the problem of formulating tight

/769 /models without generating the explicit equations of the

/770 /convex hull, a cutting plane algorithm has been pro-

/771 /posed. A number of examples have been presented to

/772 /illustrate the various ideas in this paper as well as the

/773 /cutting plane method.
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/ 777/Appendix A: Property of relaxations

/ 778/ Property 1. Let RBM be the feasible set of big-M

/ 779/relaxation of a given disjunctive set projected onto the x

/ 780/space. Let RCH be the feasible set of convex hull

/ 781/relaxation projected onto the x space. Let RB be the
/ 782/feasible set of the Beaumont surrogate that is defined in

/ 783/the x space. Then RCH⁄/RBM⁄/RB.

/ 784/Proof. First consider RBM⁄/RB. For the linear case,

/ 785/Beaumont (1990) proved that RBM�/RB. Therefore,

/ 786/RBM⁄/RB holds. For the nonlinear case, we consider

/ 787/one disjunction for simplicity. Given a nonlinear dis-

/ 788/junctive set:

789F ��
i �D

[hi(x)50] x � Rn (A1)

where hi(x ) are assumed to be convex bounded func-

/ 790/tions. The big-M relaxation of Eq. (A1) is as follows: 791hi(x)5Mi(1�yi); i � D (A2)

792
X
i �D

yi�1 (A3)

79305yi51; i � D (A4)

where Mi �/max{hi(x )jxL 5/x 5/xU}. Let RBM
F (x , y) be

/ 794/the feasible set defined by Eqs. (A2), (A3) and (A4). The

/ 795/Beaumont surrogate of Eq. (A1) is given by:

796
X
i �D

hi(x)

Mi

5N�1 (A5)

where N�/jD j and Mi are assumed to be same as in Eq.

/ 797/(A2). Let RB
F(x , y) be the feasible set defined by Eqs.

/ 798/(A5) and (A4). Since Eq. (A5) is given by a linear

/ 799/combination of Eqs. (A2) and (A3), any feasible point

/ 800/(x* , y* ) � /RBM
F (x , y ) also satisfies Eqs. (A5) and (A4).

/ 801/Hence, (x* , y* ) � /RB
F(x , y). Therefore, RBM

F (x , y )⁄/

/ 802/RB
F(x , y ). Since RBM and RB are the projection of

/ 803/RBM
F (x , y) and RB

F(x , y ) onto the x space, it follows that:

804RBM⁄RB (A6)

/ 805/ Secondly, we consider RCH⁄/RBM for linear and

/ 806/nonlinear case. The convex hull relaxation of Eq. (A1)

/ 807/is given by:

808x�
X
i �D

vi�0 x; vi � Rn (A7)
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Table 4

Comparisons of branch and bound search results for example 5

Model Big-M MINLP no cutting planes Big-M MINLP �4 cutting planes Big-M MINLP �8 cutting planes Convex hull relaxation

Relaxation value �326.4 �239.5 �221.4 �209.0

Optimal solution �197.3 �197.3 �197.3 �197.3

Number of nodes 19 13 7 7

CPU s 3.39 2.53a 1.56a 1.62

a CPU time for generating cutting planes is not included.
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809 yihi

�
vi

yi

�
50; i � D (A8)

810
X
i �D

yi�1 (A9)

811 05yi51; i � D (A10)

812 05vi5vU
i yi; i � D (A11)

/813 / Let RCH
F (x , y , n ) be the feasible set defined by Eqs.

/814 /(A7), (A8), (A9), (A10) and (A11). Consider any feasible

/815 /point (x* , y* , n*) � /RF
CH(x , y , n). From Eq. (A7), there

/816 /exist mi such that:

817 yimi�vi; i � D (A12)

818 hi(mi)50; i � D (A13)

/819 / Since hi(x) are convex functions, for any l � /D :

820 hl(x)�hl

�X
i �D

yimi

�
5

X
i �D

yihi(mi) (A14)

/821 / For hl(ml )5/0 and hl (mi)i"l 5/Ml , it follows from

/822 /Eqs. (A14), (A10) and (A11):

823 hl(x)5
X

i �D;i"l

yiMl �Ml(1�yl) (A15)

/824 / Eq. (A15) is identical to Eq. (A2) in the big-M

/825 /relaxation for l � /D . Hence, any feasible point (x* , y* ,

/826 /n*) � /RCH
F (x , y , n ) has a corresponding feasible point

/827 /(x* , y* ) which satisfies Eqs. (A2), (A3) and (A4).

/828 /Therefore, (x* , y* ) � /RBM
F (x , y). Since RBM and RCH

/829 /are the projection of RBM
F (x , y ) and RCH

F (x , y , n ) onto

/830 /the x space, it follows that:

831 RCH⁄RBM (A16)

/832 / From Eqs. (A6) and (A16), RCH⁄/RBM⁄/RB. This

/833 /completes the proof.
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