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Abstract

This paper addresses the relaxations in alternative models for disjunctions, big-M and convex hull model, in order to develop
guidelines and insights when formulating Mixed-Integer Non-Linear Programming (MINLP), Generalized Disjunctive Program-
ming (GDP), or hybrid models. Characterization and properties are presented for various types of disjunctions. An interesting result
is presented for improper disjunctions where results in the continuous space differ from the ones in the mixed-integer space. A
cutting plane method is also proposed that avoids the explicit generation of equations and variables of the convex hull. Several
examples are presented throughout the paper, as well as a small process synthesis problem, which is solved with the proposed cutting

plane method.
© 2002 Published by Elsevier Science Ltd.

Keywords: Discrete—continuous optimization; Mixed-integer nonlinear programming; Generalized disjunctive programming; Big-M relaxation;

Convex hull relaxation

1. Introduction

Developing optimization models with discrete and
continuous variables is not a trivial task. The modeler
has often several alternative formulations for the same
problem, and each of them can have a very different
performance in the efficiency on the problem solution.
In the area of Process System Engineering models
commonly involve linear and nonlinear constraints
and discrete choices. The traditional model that has
been used in the past corresponds to a mixed-integer
optimization program whose representation can be
expressed in the following equation form (Grossmann
& Kravanja, 1997):

min Z=f(x)+d"y
s.t. g(x)<0 (PA)
r(x)+Ly<0

Ay>a

* Corresponding author. Tel.: +1-412-268-2230; fax: +1-412-268-
7139

E-mail addresses: aldovec@alpha.arcride.edu.ar (A. Vecchietti),
grossmann@cmu.edu (I.E. Grossmann).

xeR" ye{0,1}¢

where f(x), g(x) and r(x) are linear and/or nonlinear
functions. In the model (PA) the discrete choices are
represented with the binary variables y involving linear
terms.

More recently, generalized disjunctive programming
(Raman & Grossmann, 1994; Tiirkay & Grossmann,
1996) has been proposed as an alternative to the model
(PA). A generalized disjunctive program can be for-
mulated as follows:

min Z = Z e+ (x)
keK

s.t. g(x)<0
Y‘k

1

A hiy(x) <0
Lo =i

Q(Y)=True

xeR", Y, e{True, False}",

keK  (GDP)

¢ =0

where the discrete choices are expressed with the
Boolean variables Y;; in terms of disjunctions, and logic
propositions 2(Y). The attractive feature of General-
ized Disjunctive Programming (GDP) is that it allows a

0098-1354/02/$ - see front matter © 2002 Published by Elsevier Science Ltd.
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symbolic/quantitative representation of discrete and
continuous optimization problems. Modeling language
for GDP problem has been discussed by Vecchietti and
Grossmann (2000).

An approach that combines the previous two models
is a hybrid model proposed by Vecchietti and Gross-
mann (1999) where the discrete choices can be modeled
as mixed-integer constraints and/or disjunctions. In this
way we can potentially exploit the advantages of the two
previous formulations by expressing part of it only in
algebraic form, and the other in a symbolic/quantitative
form. The hybrid formulation is as follows:

minZ:Z e +f(x)+d"y

keK

st. g(x)<0
r(x)+ Ly <0
Ay >a (PH)

Yy
V() <0
ieD,

Cr = Vik
Q(Y)=True
xeR', ye{0,1}9,

where r(x)+ Ly <0 is general mixed-integer constraints
that can be linear/nonlinear equations/inequalities.
These terms can be seen as disjunctions transformed
into mixed-integer form. Ay >a represents general
integer equalities/inequalities transformed from former
logic propositions.

An issue that is unclear is how the modeler should
express the discrete choices, either as a symbolic
disjunction, or in a mixed-integer form (Bockmayr &
Kasper, 1998). One possible guideline for this decision is
the gap between the optimal value of the continuous
relaxation and the optimal integer value. Since several
algorithms involve the solution of the relaxed problem,
we will investigate in this paper the tightness of different
relaxations for a disjunctive set: the big-M formulation
(Nemhauser & Wolsey, 1988), the Beaumont surrogate
(Beaumont, 1990) and the convex hull relaxation (Balas,
1979; Lee & Grossmann, 2000). The big-M formulation
and the Beaumont surrogate can be regarded as
‘obvious’ constraints. However, the convex hull relaxa-
tion of a disjunction is tighter, and can be transformed
into a set of mixed-integer constraints. The advantage of
the convex hull relaxation is that the tight lower bound
helps to reduce the search effort in the branch and
bound procedure, in both nonlinear and linear problems
(for examples of significant node reductions see Lee &
Grossmann, 2000; Jackson & Grossmann, 2002). But
the drawback with the convex hull formulation is that it
increases the number of continuous variables and
constraints of the original problem. This can potentially
make a problem more expensive to solve, especially in

keK

Y, €{True, False}", ¢, >0

large problems. The big-M relaxation is more conveni-
ent to use when the problem size does not increase
substantially when compared with the convex hull
relaxation (see Yeomans & Grossmann, 1999, who
found the big-M to be more effective). But generally
the lower bound by big-M relaxation is weaker, which
may require longer CPU time than the convex hull
relaxation. Therefore, depending on the case, there is a
trade-off between the best possible relaxation and the
problem size. In order to exploit the tightness of the
convex hull relaxation, but without the substantial
increase of the constraints, it will be shown that cutting
planes can be used that correspond to a facet of the
convex hull.

In this paper we first introduce the definition and
properties of a disjunctive set. We then present the
different relaxations and their properties. Finally, a
cutting plane method is discussed, and illustrated with
several small example problems. The goal of this paper
is not to perform a detailed computational study, but
rather to provide insights into the modeling and solution
of disjunctive problems.

2. Definitions and properties of a disjunctive set

A disjunctive set F' can be expressed as a set of
constraints separated by the or ( v ) operator:

F= A;/D[hl-(x) <0] xeR (1)

It is assumed that /;(x) is a continuous convex
function. F can be considered as a logical expression,
which enforces only one set of inequalities. The feasible
region of each disjunctive term can be expressed as the
set of points that satisfy the inequality.

R; = {xlh(x) <0} 2)

A disjunctive set can be expressed in other forms that
are logically equivalent. F can also be expressed as the
union of the feasible regions of the disjunctive terms,
which is called Disjunctive Normal Form (DNF):

F= _uD[h,-(x) <0] xeR 3)
F=UR, (4)

If the union of the feasible regions of the disjunctive
terms is equal to one of its terms, R;, which is the largest
feasible region, then the disjunctive set is called im-
proper. Otherwise the disjunctive set is called proper
(Balas, 1985). The improper disjunctive set can be
written as follows:

F=u R =R, ()

The improper disjunctive set has also the following
property:
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RSR, Vi#j (6)

which means that the feasible regions i (i #/) in the
disjunctive set F are included in the jth feasible region.
Since F is expressed as the union of the different terms,
an improper disjunctive set can be reduced to:

F = {xlh(x) <0} (7)

On the other hand, a proper disjunctive set is the one
in which either the intersection of the feasible regions is
empty, or else it is non-empty, but Eq. (5) does not
apply. Therefore, for a proper disjunctive set, either
there is no intersection among the feasible regions:

NR=yY (®)
ieD

or else, there is some intersection, but no set R; contains
all of them:

ip R#9, ip Ri# & ©)

3. Relaxations of a disjunctive set

Given a disjunctive set as condition Eq. (1) there are a
number of relaxations that can be derived, the big-M,
the Beaumont surrogate and the convex hull relaxations.
We consider below the case of convex nonlinear con-
straints, which easily simplifies to the linear case.

3.1. Big-M relaxation

Consider the following nonlinear disjunction:

F= vih(x)<0] xeR' (10)

where /;(x) is a nonlinear convex function. For simpli-
city, and without loss of generality, it is assumed that
each term in the disjunction Eq. (10) has only one
inequality constraint. The big-M relaxation of Eq. (10)
is given by:

h(x)<M(l1—y) ieD

Z yi=1

ieD

0<y, <1, ieD (11)

Again the tightest value for M; can be calculated
from:

M; = max{h,(x)|x" <x < x"} (12)

3.2. Beaumont relaxation

Beaumont (1990) proposed a valid inequality for the
disjunctive set Eq. (10). A valid M; value must be
calculated as in Eq. (12). By dividing each constraint i €
D in Eq. (11) by M; and summing over ieD, the
Beaumont surrogate, which interestingly does not in-
volve binary variables is given as follows:

3 )y (13)
ieD i

where N =|D| in Eq. (10). Beaumont showed that Eq.
(13) yields an equivalent relaxation as the big-M
relaxation Eq. (11) projected onto the continuous x
space when the constraints in Eq. (10) are linear.

3.3. Convex hull relaxation

The convex hull relaxation for the disjunctive set Eq.
(10) can be written as follows (Lee & Grossmann, 2000):

xfg v;=0 Xx,v,eR"

ieD

v, (”) <0, ieD
Vi

ZJ’;‘ZI

ieD

0<y,<1 ieD

0<v,<v’y, ieD (14)
where v” is a valid upper bound for the disaggregated

variables v;, usually chosen as xY. The Eq. (14) define a
convex set in the (x, v, y) space provided the inequalities
hi(x) <0, i e D are convex and bounded. The convex
hull in Eq. (14) can be proved to be tighter or at least as
tight as the big-M relaxation (see Appendix A). Also, for
case of linear disjunctions, F = v, _plalx<b,] xeR"
Eq. (14) reduces to the equations by Balas (1979, 1988):

X_Z v;=0 Xx,v,eR"

ieD
alv,—by, <0, ieD

Z)’i—l

ieD

0<y, <1, ieD

0<v,<yvi®, ieD (15)
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3.4. Example 1

Consider the following nonlinear disjunction:
[Cep = 17+ 0, = 1P < 1] v [(x, =4 + (x, —2)° < 1]
VG =2+, -4’ <]

where 0 <x; <5 and 0 <x; <5. The feasible region is

shown in Fig. 1. Figs. 2 and 3 show the feasible region of

the big-M and the convex hull relaxations, respectively.
The big-M relaxation is given by:

(=12 40 =12 < 14311 —y))
(=4 +(x, — 2> < 1+ 24(1 — p,)
(6, =2+ (x, — 4> < 1424(1 — py)
Mty ty=1
0<x,, x, <5,

0<y <1, i=1,23 (16)

where the big-M parameters are calculated by Eq. (12).
The convex hull of Fig. 3 is given by the equations:

Xp =V + U U3

Xy = Uyy + Uy + Up3

- 2 2 -
( + 9 (V”“—1> +< for —1) —1| <0
L\V; + ¢ Y+ ¢ i
- 2 2 -
o, + ¢ (VU” —4) +( 2 —2) —1| <0
L\, + ¢ Y, + ¢ i

- v 2 L 2 -
(3 +2) (V 13 —2) +(v 2 —4) —1| <0
L\V; + ¢ 3+ ¢& |

Nty t+y=1

A

Fig. 1. Feasible region of example 1.

A

)

4 X

Fig. 2. Big-M relaxation of example 1.

X2

v

Fig. 3. Convex hull relaxation of example 1.

0<y <1, i=1,2 3

0<v, <5y, Vi, Vj (17)

Note that to avoid division by zero ¢ is introduced in
the nonlinear inequalities as a small tolerance (Lee &
Grossmann, 2000). Typical values for & are 0.001-—
0.0001. From Figs. 2 and 3 it is clear that the convex
hull relaxation of the disjunctive set is tighter than the
big-M relaxation for this example.

4. Impact of nature of disjunctions on relaxations in x
space

Our aim in this section is to analyze different types of
disjunctions for which it may be convenient or not to
transform them into the convex hull formulation or a
big-M formulation or Beaumont surrogate. Since the
big-M formulation is as tight as the Beaumont surro-
gate, and it is more frequently used, we will compare the
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convex hull with only the big-M formulation. We will
analyze the following cases: (a) improper disjunction; (b)
proper disjunction. Within this last case we will analyze
when the intersection of the feasible regions is empty
and when it is non-empty.

If we denote the feasible region of the convex hull
relaxation in the continuous x space as Rcy, the feasible
region of the big-M relaxation as Rgyg, and the feasible
region of the Beaumont surrogate as Rg, then according
to the properties shown in the previous section, the
following can be established:

Rey € Ryyy (18)

Beaumont (1990) has shown for the linear case that
Rpn = R where Ry is defined by constraint Eq. (13). In
the Appendix A we show that Rgy S Rp for nonlinear
case. Therefore, the following property holds:

Ry S Ry 19)

It should be noted that properties Egs. (19) and (20)
apply in the space of the continuous variables x.

4.1. Improper disjunction

When the disjunctive set is improper, the property in
Eq. (6) holds. Since the feasible region of one term
contains the feasible regions of the other terms, the
relaxations of the convex hull and of the big-M can be
selected to be identical. The reason is that the redundant
terms can be dropped and the disjunctive set can be
represented by the term with the largest feasible region
R;. For example, suppose we have the following
problem:

min Z = (x; — 3.5)* + (x, — 4.5)*

Y, Y,
st [1<x, <3| v |2<x, <3 (20)
2<x,<4 3<x,<4
A
X2
OF.
4 T OOy ... oo
7+
2 -
_—
1 2 3 4 X1

Fig. 4. Feasible region of disjunctive set Eq. (20).

The feasible region is shown in Fig. 4. Choosing the
term with the largest feasible region, which is the first
one, and solving the problem as an NLP we obtain the
optimal solution x =(3,4) and Z=0.5. If we are not
aware that the feasible regions are overlapped we can
generate the big-M relaxation for this problem. If we use
M;=0.5,i=1, 2, and solve the relaxed Mixed-Integer
Non-Linear Programming (MINLP) problem, the solu-
tion is x =(3.25,4.25), Z=0.125, y=(0.5,0.5). If we
choose M; =1 and solve the relaxed MINLP then the
solution is x =(3.5,4.5), Z=0, y =(0.5,0.5). Therefore,
it is clear that arbitrary choice of M; can yield a
relaxation whose feasible region is larger than the
disjunctive term with the largest feasible region. For
the convex hull formulation it is clear that the resulting
relaxation coincides with the region of the largest term
in the x space, but at the expense of expressing it
through disaggregated variables and additional con-
straints.

4.2. Proper disjunction

4.2.1. Non-empty intersecting feasible regions

When the feasible regions of the disjunctive terms
have an intersection, it is not clear whether or not the
convex hull and the big-M formulation could yield the
same relaxation. Suppose we have disjunctions whose
feasible regions are shown in Figs. 5 and 6. In Fig. 5 it is
clear that the big-M relaxation, with a good selection of
the M; values can yield the same relaxation as the
convex hull. For the case of Fig. 6 the convex hull will
yield a tighter relaxation.

4.2.2. Disjoint disjunction

If the feasible region defined by each term in the
disjunction has no intersection with others, then the
disjunction is disjoint and proper. Fig. 7 shows an
example of disjoint disjunction. In this case, it is clear
that the convex hull relaxation should generally be

A
X2
4 T
3 4
5 4
! 4
T T T T ;
1 2 3 4 X1

Fig. 5. Intersecting disjunction.
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A A
X2
X2
4 +
4+
/
/
3T
37T /
/
/
2 T /// P
2 T / ,/’/
/ P
| // ,”/’
1 T S
(= >
1 1 1 1 »
T T T T > 1 2 3 4 xl
1 2 3 4 X1 . L . . . .
Fig. 9. Disjoint disjunction with zero point.
Fig. 6. Intersecting disjunction.
X
(3, =0
A |
X2
0<x<xYy,
4 +
0<y <1 (21
37 which includes the zero point as a feasible point. The
above also applies to linear case.
)y +
LT 5. Relaxation in x—y space
t t f f > . . .
) ; ) . The previous section analyzed the relation of relaxa-
1 1

Fig. 7. Disjoint disjunction (general case).

tighter than the big-M relaxation (an exception is the
particular case shown in Fig. 8). Also, in the special case
shown in Fig. 9, where a disjunction has two terms with
linear constraints and one of them yields zero point as a
feasible region, the convex hull yields a cone with the
zero point as the vertex. In this case, the convex hull
relaxation can be simplified by not requiring disaggre-
gated variables as given by the following:

A
X2
4 +
3 T @ —_———_ A .
;7 4+
1+
t t f f >
1 2 3 4 X1
Fig. 8. Disjoint disjunction (particular case).

tions for different types of disjunctions in the x space.
When applying the big-M constraints Eq. (11) or the
convex hull Eq. (14) these are written in the x—y space.
Therefore, an interesting question is whether or not the
properties we noted in the previous section still apply in
the x—y space. Let us consider the following example,
which has an improper disjunction.

5.1. Example 2

min Z = (x, — 1.1 + (x, — 1.1)* + ¢,

Y, Y,
st [X¥+x3<1| Vv |[x=x,=0
¢ = ¢ =
0<x, x,<1; 0<¢
Y, e {true, false} (22)

The optimal solution is x =(0.707,0.707), Y; =true
and Z =1.309. The feasible region is shown in Fig. 10
and the feasible region of the second term, which is (0,0),
is included in the feasible region of the first term.
According to the previous section since this is an
improper disjunction in the x space, it ought to be
sufficient to use the first term only. However, when
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5 . N
X2+ x2=1

(0,0)

Fig. 10. Feasible region of example 2 in the x space.

expressed algebraically, the big-M relaxation and the
convex hull relaxation of the disjunction in Eq. (23)
involve the additional variable y; as a continuous
variable. In the case of the convex hull, we apply Eq.
(22) to the first term. Rearranging the inequality y{[(x,/
124 (xa/y1)* — 1] <0 yields:

min Z = (x; — L1 4+ (x, — 1.1)* + y,
st XT+x <y}

0<x, <y

0<x,<y

0<y <1 (23)

The big-M relaxation of Eq. (23) for the first term is
given by:

min Z = (x; — L1 4+ (x, — 1.1)* + y,
st XT+x <y

0<x,x,<1l; 0<y <l (24)

Figs. 11 and 12 show the convex hull relaxation and
the big-M relaxation of Eq. (23) in the x—y space,
respectively. It is clear that Eqs. (24) and (25) are not
identical due to the difference in the right hand side of
the nonlinear inequality. In fact, the solution of Eq. (24)
is (x, y)=1(0.707, 0.707, 1) and Z =1.309. Since the
relaxed value of y; is 1, this solution is the optimal
solution of Eq. (33), which is also shown in Fig. 11. On
the other hand, the solution of Eq. (25) is (x, y) = (0.55,
0.55, 0.605) and Z=1.21 which is weaker than the
convex hull relaxation. This result can be seen by
comparing Figs. 11 and 12. There is no difference
between the feasible set of Eq. (24) and the feasible set
of Eq. (25) projected in the x space as shown in Fig. 10.
The difference, however, takes place in the x—y space.
Note that the nonlinear constraint in Eq. (25), x}+x3 <

7 (0.707,0.707,1)

X1=0

X

X1

Fig. 11. Convex hull relaxation of example 2 in the x —y space.

N

(0.55,055,0.605)

X2

x2+x2=y, P

X

/

1

Fig. 12. Big-M relaxation of example 2 in the x —y space.

1, which is shown in Fig. 12, is weaker than XT+x3 <7
in Eq. (24) for 0 <y, <1. Therefore, even though the
disjunction in Eq. (23) is improper in x space, the convex
hull yields tighter relaxation than big-M relaxation in
the x —y space. Thus, this example demonstrates that for
the case of improper nonlinear disjunctions, the convex
hull may be tighter than the big-M constraint in the x—y
space even if they are identical in the projected x space.

For the linear case, we change the nonlinear con-
straint in the first term of the disjunction Eq. (23) by the
following linear constraint:

min Z = (x; — L1Y 4+ (x, — L.1)" + ¢,

Y, Y,
st. |x+x,<1| Vv |x=x,=0
=1 =0
0<x,x,<1; 0<¢
Y, € {true, false} (25)

where the disjunction is improper in the x space. The
optimal solution is x = (0.5,0.5), Y; =true and Z =1.72.
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The convex hull of the disjunction Eq. (26) yields a
linear constraint:

X, +x, <y, (26)

After replacing the disjunction Eq. (26) with convex
hull relaxation Eq. (27), the solution is x =(0.5,0.5),
yi=1 and Z=1.72, which is exactly the optimal
solution of Eq. (26). Since the disjunction Eq. (26) is
improper in x space, only the first term is sufficient for
the relaxation. The big-M relaxation of Eq. (26) is given
by:

X+ = 1< M1 —-y) 27

This relaxation clearly depends on M; value. For
example, if M; =1 is used, then the relaxation yields
x =1(0.67,0.67), y1 =0.67 and Z = 1.042, which is weaker
than the convex hull relaxation. The best M; value in
this case is — 1, which yields exactly the same solution as
the convex hull relaxation. As shown with this example,
even for the linear improper disjunction the big-M
relaxation may have weaker relaxation than the convex
hull depending on the big-M parameter value.

6. Cutting plane method

The two previous sections have analyzed the issue of
determining in what cases it is worth to formulate
disjunctions with the convex hull relaxation in order to
obtain tighter relaxations when compared with the big-
M relaxation. In this section, we present a numerical
procedure for generating cutting planes, which poten-
tially has the advantage of requiring much fewer
variables and constraints than the convex hull relaxa-
tion. Cutting planes, which correspond to facets of the
convex hull, can improve the tightness of the big-M
relaxation. The proposed cutting planes can be used
within a branch and cut enumeration procedure (Stubbs
& Mehrotra, 1999), or as a way to strengthen an
algebraic MINLP model before solving it with one of
the standard methods.

Using as a basis the GDP model, the general form of
the strengthened MINLP model (PC,)) at any iteration n
will be as follows:

min Z = Z Z ViYix +1(X)

keK ieDy
st. g(x)<0
hy(x) < My(I—yy), ieD,, keK  (PC)
> yu=1, kek
ieD,
Ay <a
Bix<b,, n=1,2,..., N
xeR", y;e{0,1}

where fIx <b, is the cutting plane at the iteration n.
Let us denote the solution of the continuous relaxation
of (PC,,) as xBM. In order to generate the cutting plane
we consider the following separation problem, which
has as an objective to find the point within the convex
hull that is closest to the point xi™". This separation
problem is given by the NLP:

min ¢(x) = (x — ng‘")T(x . ng,n)

s.t. g(x)<0
x= Z U, kekK
ieD;

ieD,
Ay<a

Bix<b,, n=1,2,..., N
x,op €R,0<y, <1

Let the solution of the separation problem (SP,) be
x5 A cutting plane . x <b, can then be obtained
from:

(xSﬂ o )C]EM"")T(X _ xS,n) >0 (28)

where the coefficient of x is a subgradient of the
objective function of (SP,) at x> (for derivation, see
Stubbs & Mehrotra, 1999). Fig. 13 shows an example of
a cutting plane generated with the points x> and xg™".

The cutting plane method can then be stated as

follows:

1) Solve continuous relaxation of (PC,).
2) Solve separation problem (SP,,).
a)  If [|x>" —xg™M"|| <&, stop.

Cutting Plane
(x - x5)T (xS - xBM) > 0

A
ﬂ

Fig. 13. Cutting plane generated by separation problem.
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b) Else set £, =—(>"—xg™") and b, = s.t.
— (x5 —xBMmxS1Set n=n+1, return to Y,
2 2
Step 1. (x;—4) +(x,—2)"<0.5

This procedure can be used either in Branch and Cut
enumeration method where a special case is to solve the
separation problem only at the root node, or else it can
be used to strengthen the MINLP model before apply-
ing methods such as Outer-Approximation (OA), Gen-
eralized Benders Decomposition (GBD), and Extended
Cutting Plane (ECP). It is also interesting to note that
cutting planes can be derived in the x—y space. In
example 2, when we consider the cutting plane in the x
space, the big-M relaxation solution, x =(0.55, 0.55)
cannot be separated from the convex hull since it is
feasible to the convex hull onto the x space. But when
we consider the cutting plane in the x —y space, then the
big-M relaxation solution, (x, y)=(0.55, 0.55, 0.605)
can be separated from the convex hull since this point is
infeasible to the convex hull relaxation Eq. (24). This
suggests that the application of cutting planes in the x —
y space may be more effective than in the x space only
for cutting off the big-M relaxation point from the
convex hull.

Another application of the separation problem is for
deciding whether it is advantageous or not to use the
convex hull formulation. If the value of ||x>" —xp™"|| is
large, then it is an indication that this is the case. A small
difference between x> and xE™" would indicate that it
might be better to use the big-M relaxation.

It should be also noted that the proposed cutting
plane method can be extended to nonconvex disjunctive
constraints using the global optimization procedure by
Lee and Grossmann (2001). In this method the non-
convex constraints are replaced by convex under/over-
estimators, with which the convex hull relaxation or big-
M relaxation can be used. Therefore, one can use the
cutting plane method to tighten the relaxation of the
bounding convex constraints.

7. Disjunctive programming examples

In this section we present a number of examples to
illustrate the application of the main concepts in this

paper.

7.1. Example 3

min Z = (x; — 6)* + (x, —4)

Y2
e =3+ -4 <1

v Y5
(= D>+ (x,— 1) <15

0<x,, x,<5 (29)

The feasible region is shown in Fig. 14. Note that the
point (6,4), which is the minimizer of the objective
function, lies outside the convex hull of the disjunction.
The optimal solution is x =(4,4), Z=4.0, Y =((false,
true, false).

To illustrate the cutting plane procedure, first we
solve the big-M relaxation of Eq. (30) with M = (19.5,
24, 30.5) from Eq. (12). The solution is x®M = (5, 4),
ZBM = 1.0, y®™ =(0.209, 0.561, 0.230). Then we solve
the separation problem (SP,) with the relaxation point
M= (5, 4):

min Z = (x; — 5)° + (x, — 4)°
S.t. X, =v +v,+0;,

Xy = Uyy +Uyy +Ups
- 2
Uy
0y + ) (-4)
! L\, + ¢
- 2
v v
oural (2 3) (2
L\V, + ¢ V, + &

[/ v
(3 +¢) <y B
L\)3 T &

Nty t+y=1

+
VR
=
+ I\F
[
|
)
N~
LS}
|
o
)
| IS
A
o

0<y, <1, i=1,2,3
Y2 A

5

»
>

1 2 3 4 X

Fig. 14. Feasible region of example 3.
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0<v, <5y

Jt—

Vi, V)

0<x, x,<5 (30)

The solution of problem Eq. (31) is x> = (4.16, 3.70)
with the objective value of 0.791. Therefore, the cutting
plane is given as follows:

416 —5.0]" [x, —4.16
3.70—4.0| [x,—3.70

which can be simplified as —0.84(x; —4.16)—0.3(x,—
3.70) >0. We add Eq. (32) to the big-M relaxation
and solve it again. The solution of this augmented big-M
relaxation is x“F = (4.27, 3.4), Z* =3.37, y“F = (0.294,
0.676, 0.029). For comparison, we solve the convex hull
relaxation, obtaining x“=(4.27, 3.4), Zz" =337,
y“H =(0.442, 0.558, 0). Note that the solution x“* and
the objective value Z<" are identical to x“*' and ZH.
The difference in (x®™, Z®M) and (x“H, ZM) is a clear
indication that the convex hull is significantly tighter
than big-M relaxation. For this example, only one
cutting plane yields the same tightness of the relaxation
as the convex hull. The numerical results are shown in
Table 1. Note that the big-M relaxation yields the lowest
objective value to the optimal solution, 4.0. Fig. 15
shows the convex hull and cutting plane. As shown in
Fig. 15, the cutting plane is a facet of the convex hull.
From Table 1 it can be seen that the big-M relaxation
with a cutting plane yields a competitive relaxation
compared with the convex hull.

} >0 31)

7.2. Cutting planes in x—y space. example 2

Let us revisit example 2. If we apply the separation
problem (SP,) to the big-M relaxation solution xg™ =
(0.55,0.55), the objective value of the separation pro-
blem is zero since xB¥ is feasible to the convex hull
relaxation of Eq. (23) in the x space. However, if we
treat the binary variable y as continuous variable and
then extend the dimension of the solution to the x—y
space, we have the following separation problem with
(x, »)BM =(0.55, 0.55, 0.605):

min Z = [(x; — 0.55)* 4 (x, — 0.55)* 4 (y, — 0.605)’]
S.t.

X2 ‘}

Cutting plane

v

Fig. 15. Convex hull and cutting plane for example 3.

0<x, <y
0<x,<y
0<y <1

The solution is Z =0.015 and (x, )5 = (0.489, 0.489,
0.691), which means that (x, y)E™ is infeasible in the
convex hull relaxation Eq. (24) in the x—y space. The
cutting plane is now given by (0.489 —0.55)(x; —0.489) +
(0.489—0.55)(x,—0.489)+(0.691 —0.605)(y; —0.691) >
0.When this cutting plane is added to the big-M
relaxation Eq. (25), the optimal solution is (x, y)=
(0.707, 0.707, 1) and Z =1.309, which is identical to
the solution of the convex hull relaxation Eq. (24) and is
also the optimal solution of Eq. (23). This shows that the
cutting plane method applied to the x —y space can yield
tighter relaxations than the cutting plane in the x space
only.

7.3. Example 4

Consider the synthesis of a process network (Tiirkay
& Grossmann, 1996) where the following disjunctive set
is used to model the problem:

Y, Y,
hyp(x)=0| v |B;x=0| ieD,, kek (32)
Ce = Tk ¢ =0

It means that if the kth unit is selected (Y, = true)
then the first term of the disjunction applies, if it is not

2 2 2 . .
X +xX =i (SP1) (71 Yy) then a subset of the x variables is set to zero.
Table 1
Comparisons of the relaxations for example 3
Relaxation M X1 X2 »1 V2 V3 zZ
Big-M (19.5, 24, 30.5) 5.0 4.0 0.209 0.561 0.023 1.0
Convex hull - 4.27 3.40 0.442 0.558 0.0 3.37
Cutting plane - 4.27 3.40 0.294 0.676 0.029 3.37
Optimal solution - 4.0 4.0 0 1 0 4.0
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X, Y12 Y13
> Y, M 75 x x
X2s
Xis % x16l X7 Yy X8
S L L
Y;
Xg 3 Xg
v X10
X7
Fig. 16. Process superstructure of example 4.
Fig. 16 shows the superstructure of example 4, which Y, Y,
has eight units. The corresponding GDP model is as 1.25(x + X)) —Xx3=0]| Vv [x,=X;3=x1,=0
follows: ¢, =10 =0
8 —
minZ:Z ¢ +a'x+122 ¥; Y
k=1 X5 —=2x;6=0] v |x;5=2x,,=0
c5=06 ;=0
s.t. Mass balances: B
X=Xy + Xy, Xg=X5+Xg Y
oy Y
X5+ X5 =X + X4 exp s —1—Xx<0| v [xX9=x,0=0
R ¢ =0
Xy =X+ X5, X3 = X9+ X [co =7 ¢
X9+ X1+ X955 =X ~
9 T Xjg T Xp5s = X7 Y, —y,
Xpg F Xpp = X3, Xp3 = Xpg + Xy exp(xy) — 1 —x, <0| Vv |[Xy; =X, =0
Specifications: e =4 ¢ =0
X;0—0.8x; <0, x,,—04x,;,=>0 Y, Y,
X — 5%, <0, x;,—2x,=>0 exp(xg) — 1 — X0 —x; <O v [x)g=2x;;=x;3=0
12 =Y, Xp 14 = L .
(g =35 cg =10
Disjunctons: (33)
Y, oY Logic propositions:
exp(x;) —1—x, <0| v |x3=x,=0
_61:5 61:0 Y13Y3VY4VY5 Y53Y8
Y2:>Y3VY4V Y5 Y6:>Y4
_YZ Y33 Yl \ Yz Y7:> Y4
X5 _|Y2 Y33Yg Y83Y3\/Y5V(_|Y3/\_|Y5)
exp E —1—x,<0| Vv |xy=xs=0 Yo=Y, Vv Y, Y,v Y,
C:5. C2=0 Y43Y6\/Y7 Y4MY5
: Ys=Y, v Y, Yov Yy
_ Problem data:
Yy Y a' =(a,=0,a,=10,a3=1,as=1, as = —15, ag =0,
1.5 +x10 —xg =01 v 1o =0, Xy =y a7=0,a3=0, ag=—40,a,0=15,a;,=0,a1,=0, a;3=
;=6 =0 0, aig=15, a15=0, a;6=0, a17=280, ajg = —65, a9 =
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25, dro = —60, ar = 35, dyy = —80, ar3 = 0, ryg = 0,
ays = —35); xXI° =0, Vj.

Before introducing the big-M relaxation, it should be
noted that in the disjunctions we have the following
properties:

1) The disjunctions are improper since the feasible
region of the second term belongs to the feasible
region of the first term in x space (except the cost
term).

i) In the second term of the disjunctions a subset of
the continuous variables x are zero.

iii) No continuous variable x is repeated in the second
term (1 Yy) of the disjunctions.

Because of these properties, it is possible to rewrite the
disjunctions as follows:

exp(x;) —1—x,<0

Xs
ex —1—x,<0
p<1.2> !

1.5xg+x,p—x53=0
1.25(x, +x14) —x3=0

X;s—2x,4=0

x
exp<1.22> —1—x,9<0

exp(xy;) — 1 —xy <0

exp<xlg> —1—xy—x,;,<0

1.5
Disjunctions:
Y - ] )
1
up Y,
0<x,<x, 0
O<xy<xP| V[P T07
=73 = ¢, =0
=5 L1 -
v - ) )
2
up Y,
0<x,<x, 0
O<xg<xP| VM=
=75 =75 ¢, =0
=5 L2 -
Y, ] = Y,
up
0<xy<xg | V [xg=0
;=06 ] ;=0
Y,
up
Oﬁxnﬁx% Y,
0§x13ﬁx1% VX =x3=x,=0
u
0<x,<xy ¢, =0
¢y =10

Y, _ ) )
Y.
0<x;5<x7% 3
V [ Xs=X=0
up 15 15
0<x4<x6
cs=0
cs=6 L3 -
"y _ ] )
6
1Y,
0 <xy <xj9 °
V X9 =X,=0
up 19 20
0 < xp5 < Xy
c.=0
(¢ =7 ]t .
v _ ] )
7
Y
0 < xy <2657 ’
V | Xy =X =0
up 21 2
0<xy<xy
¢, =0
;=4 =7 .
Y, _
up
0<x,)<x), 1Y
up _ _ _
0<xp;<x;3|V |Xg=x7;=x3=0 (34)
up L
0<x3<x), cg=0
[C5 =3 _

It should be noted that constraints Eq. (35) consist of
global constraints (nonlinear) and disjunctions (linear).
The convex hull of the above disjunctions can be
reduced to linear constraints for the big-M relaxation
which are given by:

0<x;,<x"yw, jeJ, kekK (35)
=V keK
OSykSI, kGK

which means that if the first term of the disjunction is
true (y = 1) then the continuous variables x; can have a
value between its bounds and the fixed cost is activated,
else if the second term is true (y; =0) then the
continuous variables become zero that still satisfies the
global constraints (condition 1).

The GDP problem Eq. (34) is solved with the convex
hull relaxation. The upper bounds used are x3° =2,
xsP=2,xP=2,x1F =1, x{F =1, x{P =2, x{§ =2, X3V =
2, x3§ =3, and for the rest of the variables, x;* =6.5.
The objective function value Z=64.8 was obtained
from the convex hull relaxation, and the corresponding
NLP requires 0.07 CPU s with CONOPT/GAMS.
Applying the big-M relaxation to the modified GDP
formulation Eq. (35) and the same bounds, we obtained
Z =499 as the solution value. Therefore, the convex
hull relaxation of the original GDP model yields a much
tighter lower bound. The difference between these two
relaxation values comes from the fact that the feasible
region by the convex hull relaxation of nonlinear
disjunctions Eq. (34) in the x—y space is tighter than
the feasible region by big-M relaxation of Eq. (39).
However, it should be noted that their projections onto
the x space are identical since the disjunctions are
improper. If the disjunctions are linear, then both
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relaxations can be identical in the x—y space if appro-
priate big-M parameters are used.

Since the convex hull relaxation yields a significant
increase in the number of additional constraints and

A. Vecchietti et al. | Computers and Chemical Engineering 00 (2002) 1-16 13
nonlinear proper disjunctions. 665
9
min Z = ¢, +a'x 666
k=1

variables, we consider the generation of cutting planes
to strengthen the big-M relaxation. As outlined in
Section 6, a separation problem is solved. And the
solution of the separation problem is used to build a

—0.6 log(x), + 1) 4 0.8(x;; — 8)* 4 0.7 exp(—x,, + 1) 667
— 0.5 log(x;5s+2)

cutting plane as in example 4. The big-M relaxation of s.t. Mass balances: 668
Eq. (35) is then solved again with this cutting plane.
Since the cutting plane is a facet of the convex hull, it NP =XsH Xy Xy =X+ 669
will tighten the lower bound. Table 2 shows the increase X0 = Xpo + Xog, Xy = Xp7 + X8 670
of the lower bound as cutting planes are added to the
big-M relaxation. The first column shows the number of Xig = Xgp F Xy, Xg = Xy Xy 671
cutting planes added. The second column shows the Xy = Xos + Xog 672
relaxation value. Note that the optimal solution of
example 4 is 68.01. The third column shows the objective Specifications: 673
value of the separation problem. As more cutting planes
are added, the objective value of the separation problem Y+ 4y <30 674
decreases, implying that the solution point of the Xo + X9+ X <25 675
augmented big-M relaxation gets closer to the convex
hull. The fourth column shows the CPU time of Xip X3 Xy s+ X < 20 676
separation problem. The fifth and sixth column show Y,
the MINLP solution results by DICOPT + + with the xo < 1.7 log(x, + x5+ 1) =Y,
corresponding cuts. In all cases, the optimal solution is Xg > 0.1+ 0.2 VX, =X5=xy=0 677
found in the second major iteration. Since this problem x5 > 2x, ¢, =0
is a convex MINLP, the Outer-Approximation (OA) ¢, =2
algorithm stops when the crossover occurs. The CPU :
time is less than 1 s on a Pentium III PC 600 MHz with Y,
128 Mbytes RAM memory. After adding seven cutting X1 =0.9x; + 0.8x; Y,
planes, the lower bound improved significantly com- 1 <x;+4x; VX3 =x;=x,=0
pared with the case when no cutting plane is used (62.5 X7 2 X3 =0
vs. 49.9). The advantage of the cutting plane method is (e, =1
that only one linear constraint is added to the big-M B
relaxation at each step. However, there is a cost for 135 _
oo ) . . Sxpp = X6+ Xxg T Y;
building a cutting plane and that is to solve a separation Y = x vl = =0
problem, which is a convex NLP problem (SP,,). 6° 78 o i
x;p =1 c;=0
;=9
7.4. Example 5 : ’
Y, Y,
To illustrate the application of the cutting plane X5 <log(xy; + 1) +0.1 x : —
method with a branch and bound algorithm, we have Yos = 1 CB: 0 »
constructed the following GDP problem with linear/ (e =15 !
Table 2
Numerical results of cutting plane method for example 4
Number of cutting planes  Big-M relaxation Separation problem solution  Separation CPU (s) DICOPT+ + major iterations  CPU (s)
0 49.9 0.545 0.043 2 0.139
1 51.7 0.701 0.078 2 0.129
2 52.2 0.576 0.078 2 0.121
3 53.2 0.163 0.027 2 0.139
4 61.2 0.010 0.039 2 0.248
5 61.9 0.004 0.051 2 0.151
6 62.4 0.005 0.051 2 0.143
7 62.5 0.002 0.051 2 0.157
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[ Y5 _y Table 3
X5 < 1.5 log(x,, + 1) v | i Yoo =0 Numerical results of cutting plane method for example 5
a6 = 1 5= 0 Number of cutting Big-M relaxation Separation problem
65 = 4 planes solution solution
Y6 0 —3264 91.2
(¥ =4+ (e =4y <12 ;17Yi o =0 I 2656 597
Xy =1 o =0 2 —2558 9.76
=37 6 3 —2455 7.12
- - 4 —2395 4.34
Y; 5 —2380 435
X1y <7 — 1.2(xy — 3)° Y, 6 —2244 239
xzzﬁg_(xzo_3)2 V [ X3 =Xy =Xy =0 7 —2234 1.31
o >1 . =0 8 —221.4 0.91
20 = L~7 9 —=2208 0.25
(e, =74 10 —2197 0.19
_YS Convex hull relaxation ~ —209.0 0
x5 < 1.2 log(x,9 +2) -1 Y
i:j i } 0231 v ZE:S:_OXW =0 increases and the objective value of the separation
c =_6.5 problem decreases. After adding ten cutting planes, the
- 8 lower bound significantly improved (—219.7). Table 4
Y, shows the branch and bound search results when cutting
X1+ X3 =5 Y, planes are added before starting the branch and bound
Xje<0+2logx;g+1)| v |xe=x5=0 (36) search. First, the big-M MINLP problem is solved with
Xig > 1 cg =0 branch and bound search. Nineteen nodes are searched
[¢g=5.2 and the optimal solution —197.3 is found. Secondly,
Logic proposition: four cutting planes are added to big-M MINLP problem
at the root node of branch and bound tree. Note that the
YivY,vY; relaxation value, which is the objective value at the root
(Y, A Y, A Yy node, is —239.5 and 13 nodes are searched to find the
optimal solution. The decrease in the number of search
Y, v Ys . . . .
nodes is due to the tighter relaxation value. When eight
Yi=Y, v Y cutting planes are added, the relaxation value is —221.4
Y,=7, and only seven nodes are searched. For comparison, the
Y. convex hull relaxation of Eq. (36) is solved and the
5 1 number of nodes is seven, which is same as in the case of
Y,=Y,v Y eight cutting planes. The CPU time for each case is also
Yi=Y, v Y, shown in Table 4 and less CPU time is spent with fewer
number of nodes. The CPU time for generating eight
Yo= 1, cutting planes is about 2 s. This example clearly shows
1Yy v Y, that the cutting planes can tighten the relaxation and
Y, =Y, thus reduce the number of search nodes in branch and

[Y, Vv Ys]=[Y, v Y5 v Y]
O Y, A Y=Y, A Yl vI[Ys A Yyl vIY; A Y]

0<x,<9 j=1,...,26; 0<¢, Y,e{true, false},
k=1,...,9
The optimal solution is Z=-197.3,

Y2, Y3, YG: Y7,Y9 =true and x= (115,0,156, 272,0,
1.15,1.56,1.15,0,2.67,1.53,0,6.87,9,0,7.38,0.53,1,0,2.67,

4.02,4.98,0,0,0,0). The big-M relaxation of Eq. (36)
yields a lower bound of —326.4. The convex hull
relaxation of problem Eq. (36) yields a lower bound of
—209. Table 3 shows the results of cutting plane method
applied to big-M relaxation of Eq. (36). As more cutting
planes are added, the lower bound of big-M relaxation

bound method. Although the example presented is
rather small, the proposed cutting plane method should
be promising for solving larger problems. This will be
the subject of our future work.

8. Conclusions

The purpose of this paper has been to analyze the
different alternatives of modeling the discrete choices as
disjunctions or as mixed-integer (0—1) inequalities, in
order to provide guidelines on this decision. The
resulting model can correspond to one of the three
formulations: mixed-integer constraints (PA), disjunc-
tive constraints (GDP) or hybrid (PH). For the analysis,
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Table 4
Comparisons of branch and bound search results for example 5

Big-M MINLP no cutting planes Big-M MINLP +4 cutting planes Big-M MINLP + 8 cutting planes Convex hull relaxation

Model

Relaxation value —326.4 —239.5
Optimal solution —197.3 —197.3
Number of nodes 19 13
CPU s 3.39 2.53%

—221.4 —209.0

—197.3 —197.3
7 7
1.56* 1.62

% CPU time for generating cutting planes is not included.

we considered three different possible relaxations of a
disjunctive set, the convex hull, the big-M relaxation and
the Beaumont surrogate. The analysis was performed
mainly on the first two since the big-M formulation is
widely used.

Although it was proved that the convex hull relaxa-
tion yields a tighter relaxation than the traditional 0—1
big-M relaxation, there are several cases when the big-M
relaxation can compete with the convex hull relaxation.
As a general rule, the big-M model is competitive when
good bounds can be provided for the variables, and for
large problems where it is important to keep the number
of equations and variables as small as possible. For
convex improper disjunction both the convex hull and
the big-M model give the same relaxation in the x space,
but this may not be true in the x—y space as was
demonstrated with examples. For proper disjunctions
where the feasible regions have some intersection, the
objective function plays an important role, if the
minimizer of the objective function is inside the feasible
region of the disjunctive set, both the big-M and the
convex hull relaxation may yield the same relaxation
value. Otherwise the convex hull should be generally
better, but the big-M constraints with appropriate
bounds can be competitive. For proper disjunctions
with an empty intersection on the feasible regions
(disjoint terms) the convex hull is generally better than
the big-M relaxation. Although these conclusions are
not general, we believe they help to provide some insight
in the modeling of discrete/continuous optimization
problems.

Finally, to address the problem of formulating tight
models without generating the explicit equations of the
convex hull, a cutting plane algorithm has been pro-
posed. A number of examples have been presented to
illustrate the various ideas in this paper as well as the
cutting plane method.
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Appendix A: Property of relaxations

Property 1. Let Rpy be the feasible set of big-M
relaxation of a given disjunctive set projected onto the x
space. Let Rcy be the feasible set of convex hull
relaxation projected onto the x space. Let Ry be the
feasible set of the Beaumont surrogate that is defined in
the x space. Then Rcy < Rpm € Rp.

Proof. First consider Ry < Rg. For the linear case,
Beaumont (1990) proved that Rpy = Rg. Therefore,
Rgm S Ry holds. For the nonlinear case, we consider
one disjunction for simplicity. Given a nonlinear dis-

junctive set:
F= AvD[hl-(x) <0] xeR" (A1)

where hnxi are assumed to be convex bounded func-
{6 =t Wig-KP reldablon of Eq. (A1) is as folloWs?)
=1

>y (A3)
ieD
0<y <1, ieD (A4)

where M; = max {/;(x)|x" <x <xY}. Let REm(x, y) be
the feasible set defined by Eqgs. (A2), (A3) and (A4). The
Beaumont surrogate of Eq. (Al) is given by:

ZMSNfl

ieD i

(A5)

where N = |D| and M, are assumed to be same as in Eq.
(A2). Let Ri(x, y) be the feasible set defined by Egs.
(AS) and (A4). Since Eq. (AS) is given by a linear
combination of Egs. (A2) and (A3), any feasible point
(x*, y*) e Rhm(x, ») also satisfies Eqs. (A5) and (A4).
Hence, (x*, y*)eRE(x, y). Therefore, REm(x, y) <
RE(x, »). Since Rgv and Rp are the projection of
REm(x, y) and RE(x, y) onto the x space, it follows that:

Rpy € Ry (A6)

Secondly, we consider Rcy S Rgy for linear and
nonlinear case. The convex hull relaxation of Eq. (Al)
is given by:

X_Z ;=0 x,v,eR"

ieD

(AT)
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Vi, C) <0, ieD (A8)
> =1 (A9)
ieD

0<y <1, ieD (A10)
0<v,<vly, ieD (A11)

Let REn(x, y, v) be the feasible set defined by Egs.
(A7), (A8), (A9), (A10) and (A11). Consider any feasible
point (x*, y*, v¥)e Reu(x, v, v). From Eq. (A7), there
exist y; such that:
ieD

ieD

(A12)
(A13)

Yilli = Uy,
hi(p,) <0,

Since /;(x) are convex functions, for any / € D:

hy(x) =h (Z %/‘i) = Z yihi(u;)

ieD ieD

(A14)

For h(w;) <0 and hy(w;); -1 <M, it follows from
Egs. (A14), (A10) and (A11):

h(x) < Z yiM; =M1 —y)

ieD,i#l

(A15)

Eq. (A1l5) is identical to Eq. (A2) in the big-M
relaxation for / € D. Hence, any feasible point (x*, y*,
v¥)e REn(x, v, v) has a corresponding feasible point
(x*, y*) which satisfies Eqgs. (A2), (A3) and (A4).
Therefore, (x*, y*)eREM(x, y). Since Rpy and Rey
are the projection of Rim(x, y) and Reu(x, y, v) onto
the x space, it follows that:

Reu € Rgy (A16)

From Egs. (A6) and (A16), Rcy S Rgm S Rg. This
completes the proof.
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