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Abstract. The development of a disjunctive program solver is described in this paper. 
First, the implementation of a language compiler needed to formulate discrete 
decisions thorough disjunctions is presented. The proposed language is implemented 
as a superset of the commercial mathematical program system solver GAMS.  The 
interactions between both systems are also detailed. Finally, the steps executed to 
solve problems formulated with disjunctions with the new system are presented. 

1. Introduction 

In recent years, there have been several research efforts for the inclusion of logic into 
mathematical programming problems. Constrained Logic Programming (CLP) and 
Generalized Disjunctive Programming (GDP) are examples of research areas dealing with 
logic in the problem formulation. The use of logic has shown advantages in the formulation 
and solution of optimization problems. Using logic at the problem formulation level 
facilit ates in many cases the expression, readabilit y and understandabilit y of discrete 
decision constraints. Many discrete decisions are written in a more natural way through 
logic constraints and/or disjunctions. On the other hand, the solution algorithms proposed 
by CLP and GDP have improved the execution time needed to reach the solution compared 
with those generated for mathematical programs (Darby-Dorman et al., 1997, Van 
Hentenryck and Saraswath, 1997, Turkay and Grossman, 1996, Lee and Grossmann, 2000). 
Larger and complex problems can be solved with those new algorithms. Even with those 
advantages shown by CLP and GDP, few implementations in commercial or research codes 
have been made. ECLIPSE (Wallace et al., 1997) and ILOG (ILOG, 1998) are solvers 
developed for CLP, LOGMIP (Vecchietti and Grossmann, 1999) is a prototype for GDP. It 
is needed the implementation of a language for the incorporation of disjunctions and logic 
propositions in mathematical program solvers (Vecchietti and Grossmann 2000). 

In this paper we present some issues related to the implementation of a language to 
express disjunctions as a superset of the commercial mathematical program system GAMS 
(Brooke et al, 1996). We describe the language compiler architecture and the internal 
representation.  The solutions adopted to solve the interaction between the existing system 
(GAMS) and the new system (LOGMIP) are also presented.  

2. Language Syntax  

The reader can find in Raman and Grossmann (1994) a complete description about 
disjunctions, their properties and the implications into mathematical programs. 



 
 

For the selection of the statements to formulate disjunctions, the  following properties 
were considered:  

� Simple syntax 
� Semantic very close to the disjunction expression so that we can model blocks, 

which are exclusive between them. 
� The syntax must be already known for a regular user. 
� The statement must permit the definition of embedded disjunctions (disjunctions 

with terms that contains disjunctions) . 
We have chosen the selection statement IF..THEN..ELSE..ENDIF because it complies 

with all properties previously cited. 
The following notation is used to describe the syntax of the language: 
Symbol Meaning 
<  > The phrase enclosed is a syntactic rule 
Word Token 
[] Optional expression 
{} Expression that can be repeated 
( ) Expression enclosed can be grouped 
::= Define like 
| OR 
For the disjunction expression in LOGMIP we can use the following context free 

grammar: 
<LOGMIP Model> ::= 

(<Disjunction Declaration> | <Disjunction Definition>) {; <LOGMIP Model>} 
 ; 
<Disjunction  Declaration> ::= 
 disjunction identifier {, identifier} ; 
 ; 
<Disjunction Definition> ::= 
 disjunction  identifier is <If Sentence>  

; 
<If Sentence> ::= 
        if <condition> then <components> else <components> end if ; 
      | if <condition> then <components> {elsif <condition> then <components>} end if 

 ; 
<components> ::= 
 entity {; entity} [; <If  Sentence>]; 
 
In the syntax above <components> represents constraint identifiers of the mathematical 

base language (MBL). Those identifiers can be represented by the MBL in different 
formats. By defining the components rule as sequence of entities, the purpose is to isolate 
LOGMIP language syntax from MBL syntax. In this way LOGMIP can extend any MBL 
(e.g. GAMS, AMPL, LINDO) with minimum changes in the LOGMIP language grammar. 

3. Compiler Architecture  

The compiler was designed using the Pipes and Filters Architecture approach (Garlan 
and Shaw, 1993). Two main components exist in this architecture model: a) the filters that 
perform some transformation over the information they receive and produce as output some 



Parser Lexer 

Model 
Composer 

Logic 
Extractor 

Logmip 
Solver 

Logmip 
Symbol 
Table 

Errors 
Manager 

MBL 
Compiler 

Input 
File 

Solution  

Semantic 
Analizer 

LOGMIP Compiler 

Filter 

Pipe 

Fig1: Architecture used in LOGMIP compiler design 

other information and b) the pipes which deal with the information transport between the 
filters. The LOGMIP compiler architecture based on this model is shown in Fig. 1. 

 
     
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

The following table shows the different  filters composing the compiler and their action: 
Filter Action 

Lexer Transform the input into tokens that are passed to the parser 

Parser 
Verifies the correctness of the tokens sequence and generates an intermediate 
model which is passed to the semantic analyzer 

Semantic 
Analyzer 

Verifies the semantic correctness of the intermediate model. At this point all the 
validation about the disjunction model finish 

Model 
Composer 

Transforms the validated model in a LOGMIP disjunction representation and 
passes it the Logic Extractor  

Logic Extractor Takes the LOGMIP disjunction representation and generates the logic information 
needed by  LOGMIP Solver. 

Logmip Symbol 
Table 

Receives the base symbol information and transforms them into LOGMIP 
identifiers 

Errors Manager Receives the information about the lexical, syntax and semantic errors encountered 
and display them to the modeler. 

4. Interactions between MBL and LOGMIP compiler  

Some identifiers of the MBL model are necessary to formulate disjunctions. For 
example, in GAMS language those identifiers are variables, equations, sets, and parameters. 
In order to know all the MBL identifiers used in the disjunction formulation, the LOGMIP 
grammar is checked after the MBL compiler recognizes its constructions and generates the 
symbol table. In this way, the disjunctions compiler avoids the recognition of the MBL 
symbols. With this strategy we can obtain the following advantages: 

� The language can be embedded independently of the base language. LOGMIP only 
has to recognize the grammar of disjunctions. 

� The syntax and semantics of mathematical model is already checked at the moment 
of the logic compilation. 

� The maintainability is also easier because changes in the base language have a 
minimum impact in the compiler of disjunctions.  



 
 

On the other hand, the base language does not need to recognize disjunctions. In the 
input file there exists a special section for LOGMIP which is ignored by the MBL compiler. 
Fig. 2 shows the interaction between both compilers. 

 
 
 
 
 
 
 

       Fig. 2: Interactions between the MBL and LOGMIP compilers 

5. Internal Representation of disjunctions and base identifiers 

To represent the identifiers that are involved in logic model, the software design pattern 
ADAPTER (Gamma et al., 1994) was used in order to minimize the interaction between the 
MBL and LOGMIP compilers. This software pattern converts the interface of a class into 
an interface expected by another class. In this case, ADAPTER converts the interface of the 
MBL in the one expected by LOGMIP compiler. The class Logmip Identifier in Fig. 3 
represents the LOGMIP interface. Using this approach, if the base identifiers interface 
changes, only  Logmip Identifier must be corrected, but not the rest of the representation. 

An identifier must be declared for each disjunction such that the modeler can define 
different models with the same disjunction set using the associated name.  

Note that a disjunction is composed of terms, a term can be a disjunction, giving it a 
recursive structure. The algorithms applying to the disjunction can be applied also over its 
terms. The abstractions about the elements of a disjunction and the terms composing it are 
represented in Fig. 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Class diagram of the internal representation 
The explicit terms of the diagram are those starting with IF..THEN or ELSIF.. THEN, 

while the implicit terms are those terms associated to implicit terms where their condition is 
negated. Through this basic abstractions we can handle the semantic associated to a 
disjunction.  
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6. Algorithms implementation 

Once the first compilation step (the base language) and the second step (the LOGMIP 
language) have finished successfully we can proceed with the problem solution.  

The possible paths that disjunctive or hybrid problems follow to reach the solution can 
be found in Vecchietti and Grossmann (2000). The difference between a pure disjunctive 
problem and a hybrid model is the way we are formulating the discrete decisions: with 
disjunctions only or involving mixed/integer constraints and disjunctions, respectively. 

The problem modeled with disjunctions is converted into a mixed integer problem 
through the application of the convex hull of a disjunctive set, and then solved by any 
mathematical algorithm available in the base system (GAMS for instance). If the problem is 
linear, after the application of the convex hull we can solve it with the implementation of 
the Branch and Bound method (OSL, CPLEX, XA), if the problem is nonlinear we can 
solve the resulting convex hull transformation with the OA/ER/AP algorithm (DICOPT++). 
Fig. 4 shows this situation. 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Flow diagram of the problem solving 

7. Examples 

We have solved several examples from the process system-engineering domain with 
this approach. Categories of the examples cover process synthesis, batch design, 
spectroscopy parameters determination, design with discontinuous cost function, etc. We 
can not show the results obtained in the solution of these problems for space reasons. In 
general, lower CPU time was used to reach the solution or a better optimal solution 
compared with a mathematical approach was obtained. Some results obtained with this 
approach can be found in Vecchietti and Grossmann (2000). Examples coming from other 
areas have also been solved.  

8. Conclusions 

In this paper we have described some issues about the implementation of a 
disjunctive program solver. The selection statement IF..THEN..ELSE..ENDIF was selected 
because of its expressiveness, easy to use, recursion capability and well-known syntax and 
semantic. A compiler for this statement has been implemented. 

Since Generalized Disjunctive Programming includes logic into mathematical program 
formulations, the implementation was made over GAMS which is a well known system for 
the formulation and solution of mathematical programs. One important objective of the 
implementation made was to minimize the interaction between the mathematical program 
system and LOGMIP. To reach this goal, we have used the software design pattern 
ADAPTER. ADAPTER translates the base language inputs into outputs understandable for 



 
 

LOGMIP, such that if the language input changes we have to redefine ADAPTER while 
maintaining unchangeable the rest of the interface. The Object Oriented approach has been 
used to model the internal representation of the language. In this way, we can  reuse the 
code generated for the compiler and make the system maintenance easier. 

The use of the language facilit ates the problem formulation making it easier to write and 
modify. In this way the modeler can concentrate his efforts in the generation of an eff icient 
model instead of f iguring out how to write a discrete decision with a mathematical 
expression. 

The automatic generation of the convex hull for linear and nonlinear disjunctive 
models has shown advantages in the time needed to reach the solution and for some cases 
the optimal solution obtained is better than in a mathematical problem formulation. 
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