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1. Introduction 

LogMIP 1.0  is a program for solving linear and nonlinear disjunctive programming 
problems involving binary variables and disjunction definitions for modeling discrete 
choices. While the modeling and solution of these disjunctive optimization problems 
has not yet reached the stage of maturity and reliability as LP, MIP and NLP modeling, 
these problems have a rich area of applications.  

LogMIP 1.0 has been developed by A. Vecchietti, J.J. Gil and L. Catania at INGAR 
(Santa Fe-Argentina) and Ignacio E. Grossmann at Carnegie Mellon University 
(Pittsburgh-USA). 

 
LogMIP is composed of: 

� a language  compiler for the declaration and definition of disjunctions and logic 
constraints, 

� solvers for linear and non-linear disjunctive models. 
 
Those components are linked to GAMS. Both parts are supersets of GAMS language 
and solvers respectively. LogMIP is not independent of GAMS. Besides the disjunction 
and logic constraints declaration and definition, LogMIP needs the declaration and 
definitions of scalars, sets, tables, variables, constraints, equations, etc. made in 
GAMS language for the specifications and solution of a disjunctive problem. 

2.  Disjunctive model formulation 
The models for LogMIP have the following general formulation: 
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     x , ck  are continuous variables, 
     y   are binary variables (0-1),  
     Yik   are Boolean variables, to establish whether a disjunction term is true 

or false 
      Ω(Y) logic relationships between Boolean variables, 
     f(x)   objective function, which can be linear or non-linear, 
     g(x)  linear or non-linear inequalities/equalities independent of the discrete 

choices, 
     r(x)+Dy≤0  mixed-integer inequalities/equalities that can contain linear or non-linear 

continuous terms (integer terms must be linear), 
       Ay ≤ a  linear integer inequalities/equalities 
       dTy   linear fixed cost terms. 
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We present three small examples in order to illustrate the meaning of the previous 
disjunctive/hybrid formulation. The first two corresponds to linear models, the later to a 
nonlinear disjunctive model. 
 
2.1. SMALL  EXAMPLE  1 

 
 

 

 
This example corresponds to a Jobshop 
(Jobshop scheduling) problem, having 
three jobs (A,B,C) that must be executed 
sequentially in three steps (1,2,3), but not 
all jobs require all the stages, meaning that 
the jobs will be executed in a subset of 
stages. The processing time for each stage 
is given by the following table: 
 
Job/stage 1 2 3 

A 5 - 3 
B - 3 2 
C 2 4 - 

 

The objective is to obtain the sequence of 
task, which minimizes the completion time 
T. In order to obtain a feasible solution the 
clashes between the jobs must be 
eliminated.  
For more details about this formulation see 
Raman y Grossmann (1994).  

 
 

LogMIP input file for this example  

First Version – Using 6 binary variable 
SET I /1*3/; 
SET J /A,B,C/; 
BINARY VARIABLES Y(I); 
POSITIVE VARIABLES X(J),T; 
VARIABLE Z; 
EQUATIONS  EQUAT1, EQUAT2, EQUAT3, 
                       EQUAT4, EQUAT5, EQUAT6, 
                       EQUAT7, EQUAT8, EQUAT9, DUMMY, 

OBJECTIVE; 
 
EQUAT1..   T =G= X('A') + 8; 
EQUAT2..   T =G= X('B') + 5; 
EQUAT3..   T =G= X('C') + 6; 
EQUAT4..   X('A')-X('C')+ 5 =L= 0; 
EQUAT5..   X('C')-X('A')+ 2 =L= 0; 
EQUAT6..   X('B')-X('C')+ 1 =L= 0; 
EQUAT7..   X('C')-X('B')+ 6 =L= 0; 
EQUAT8..   X('A')-X('B')+ 5 =L= 0; 
EQUAT9..   X('B')-X('A') =L= 0; 
DUMMY..   SUM(I, Y(I)) =G= 0;  
OBJECTIVE.. Z =E= T; 
 
X.UP(J)=20.; 

GAMS components 
declaration section. 

GAMS equations and 
constraints definition.  
 

Dummy equation just to avoid 
the elimination of variable Y 
from the model, which handles 
disjunction terms.  

Constraints independent  
of  discrete choices 
(disjunctions) 

Constraints for  
discrete choices 
(disjunctions)  

Constraint definitions 
corresponding to disjunction 
terms are defined here.  
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$ONECHO > "%lm.info%" 
DISJUNCTION D1,D2,D3; 

 
D1 IS 
IF (Y('1')) THEN 
          EQUAT4; 

ELSE 
          EQUAT5; 

ENDIF; 
 
D2 IS 

IF(Y('2')) THEN 
         EQUAT6; 

ELSE 
         EQUAT7; 

ENDIF; 
 
D3 IS 

IF(Y('3')) THEN 
         EQUAT8; 

ELSE 
         EQUAT9; 

ENDIF; 
$OFFECHO 
 
OPTION MIP=LMCHULL; 
MODEL PEQUE1 /ALL/; 
SOLVE PEQUE1 USING MIP MINIMIZING Z; 

 
 

Second Version – Using 3 binary variable 
SET I /1*3/; 
SET J /A,B,C/; 
BINARY VARIABLES Y(I); 
POSITIVE VARIABLES X(J),T; 
VARIABLE Z; 
EQUATIONS  EQUAT1, EQUAT2, EQUAT3, 
                       EQUAT4, EQUAT5, EQUAT6, 
                       EQUAT7, EQUAT8, EQUAT9, DUMMY, 

OBJECTIVE; 
 
EQUAT1..   T =G= X('A') + 8; 
EQUAT2..   T =G= X('B') + 5; 
EQUAT3..   T =G= X('C') + 6; 
EQUAT4..   X('A')-X('C')+ 5 =L= 0; 
EQUAT5..   X('C')-X('A')+ 2 =L= 0; 
EQUAT6..   X('B')-X('C')+ 1 =L= 0; 
EQUAT7..   X('C')-X('B')+ 6 =L= 0; 
EQUAT8..   X('A')-X('B')+ 5 =L= 0; 
EQUAT9..   X('B')-X('A') =L= 0; 
DUMMY..   SUM(I, Y(I)) =G= 0;  
OBJECTIVE.. Z =E= T; 
 
X.UP(J)=20.; 

In this section are defined 
the disjunctions according 
to the syntax defined  for 
LogMIP. 
This section is compiled by 
LogMIP and ignored by GAMS. 

LMCHULL is the solver, which 
generates a MIP problem by 
applying the convex hull  
relaxation of a disjunctive 
set . Then a conventional B&B 
algorithm solves the MIP GAMS 
Input file generated by the 
application. 
 

GAMS components 
declaration section. 

GAMS equations and 
constraints definition.  
 

Dummy equation just to avoid 
the elimination of variable Y 
from the model, which handles 
disjunction terms.  

Constraints independent  
of  discrete choices 
(disjunctions) 

Constraints for  
discrete choices 
(disjunctions)  

Constraint definitions 
corresponding to disjunction 
terms are defined here.  
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$ONECHO > "%lm.info%" 
DISJUNCTION D1,D2,D3; 
 
 D1 IS 
IF Y('A') THEN 
        EQUAT4; 
ELSE 
        EQUAT5; 
ENDIF; 
 
 D2 is 
IF Y('B') THEN 
        EQUAT6; 
ELSE 
        EQUAT7; 
ENDIF; 
 
 D3 IS IF Y('C') THEN 
        EQUAT8; 
ELSE 
        EQUAT9; 
ENDIF; 
 
$OFFECHO 
 
OPTION MIP=LMBIGM; 
OPTION LIMCOL=0; 
OPTION LIMROW=0; 
OPTION OPTCR=0.0; 
MODEL PEQUE1 /ALL/; 
SOLVE PEQUE1 USING MIP MINIMIZING Z; 
 

Third Version – Alex Meeraus compact version 
$TITLE LOGMIP USER'S MANUAL SMALL EXAMPLE 1 
SETS J JOBS   / A, B, C / 
          S STAGES / 1*3 / 
         GG(J,J) UPPER TRIANGLE 
ALIAS (J,JJ),(S,SS); 
 
TABLE P(J,S) PROCESSING TIME 
       1     2     3 
  A   5            3 
  B         3      2 
  C   2    4 
 
PARAMETER C(J,S)  STAGE COMPLETION TIME 
          W(J,JJ) MAXIMUM PAIRWISE WAITING TIME 
          PT(J)   TOTAL PROCESSING TIME 
          BIG     THE FAMOUS BIG M; 
 
GG(J,JJ) = ORD(J) < ORD(JJ); 
 
C(J,S)  = SUM(SS$(ORD(SS)<=ORD(S)), P(J,SS)); 
W(J,JJ) = SMAX(S, C(J,S) - C(JJ,S-1)); 
PT(J)   = SUM(S, P(J,S)); 
BIG     = SUM(J, PT(J)); 
 
VARIABLES T           COMPLETION TIME 
                     X(J)       JOB STARTING TIME 
                     Y(J,JJ)   JOB PRECEDENCE 
 
POSITIVE VARIABLE X;    BINARY VARIABLE Y; 
 
EQUATIONS COMP(J)    JOB COMPLETION TIME 

LMBIGM is the solver, which 
generates a MIP problem by 
applying the Big-M relaxation 
of a disjunctive set . Then a 
conventional B&B algorithm 
solves the MIP GAMS Input file 
generated by the application. 
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                      SEQ(J,JJ)   JOB SEQUENCING J BEORE JJ 
                       DUMMY     FORCE NAMES INTO MODEL; 
 
 
COMP(J).. T =G= X(J) + PT(J); 
 
SEQ(J,JJ)$(ORD(J) <> ORD(JJ))..  X(J) + W(J,JJ) =L= X(JJ); 
 
DUMMY.. SUM(GG(J,JJ), Y(J,JJ)) =G= 0; 
 
X.UP(J) = BIG; 
 
MODEL M / ALL /; 
 
$ONECHO > "%lm.info%" 
DISJUNCTION D(J,JJ); 
 
D(J,JJ) WITH ORD(J) < ORD(JJ) IS 
IF Y(J,JJ) 
   THEN SEQ(J,JJ); 
   ELSE SEQ(JJ,J); 
ENDIF; 
 
$OFFECHO 
OPTION MIP=LMBIGM; 
 
SOLVE M USING MIP MINIMIZING T; 

 



LogMIP User’s Manual 
7 

 

2.2. SMALL EXAMPLE 2 
 

 

 
 
Small example for illustration purpose. It is 
composed by two disjunctions each one 
with two terms. 
 
Each term of the first disjunction  is handled 
by different variables. The first term is true 
if Y1 is true; the second term of the first 
disjunction is true if Y 2 is true. 
 
The second disjunction is handled just for 
one variable:  Y3. The first term apply if Y 3 is 
true, the second if Y 3 is false. 
 
The logic propositions indicates  that: 
1. If Y1 is true and Y 2 false it implies that 

Y3 must be false. 
2. Y2 and Y3 cannot be both true at the 

same time.  
 
 

 
LogMIP input file for this example 
 
SET I /1*3/; 
SET J /1*2/; 
SCALAR M /100/; 
BINARY VARIABLES Y(I); 
POSITIVE VARIABLES X(J), C; 
VARIABLE Z; 
EQUATIONS EQUAT1, EQUAT2, EQUAT3, EQUAT4, EQUAT5, EQUAT6, 
           DUMMY, OBJECTIVE; 
 
EQUAT1..  X('2') =L= X('1') - 2; 
EQUAT2..  C =E= 5; 
EQUAT3..  X('2') =G= 2; 
EQUAT4..  C =E= 7; 
EQUAT5..  X('1')-X('2') =L= 1 ; 
EQUAT6..  X('1') =E= M * Y('3'); 
 
DUMMY.. SUM(I, Y(I)) =G= 0; 
 
OBJECTIVE.. Z =E= C + 2*X('1') + X('2'); 
X.UP(J)=5; 
C.UP=7; 
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$ONECHO > "%lm.info%" 

DISJUNCTION D1,D2; 
 
D1 IS 
IF Y('1') THEN 
        EQUAT1; 
        EQUAT2; 
ELSIF Y('2')THEN 
        EQUAT3; 
        EQUAT4; 
ENDIF; 
 
D2 IS 
IF Y('3') THEN 
        EQUAT5; 
ELSE 
        EQUAT6; 
ENDIF; 
Y('1') -> not Y('3'); 
Y('2') -> not Y('3') ; 
Y('3') -> not Y('2') ; 

$OFFECHO 
 
 
OPTION MIP=LMBIGM  
MODEL PEQUE2 /ALL/; 
SOLVE PEQUE2 USING MIP MINIMIZING Z; 
 

LMBIGM is the solver, which 
generates a MIP problem by 
applying the BigM relaxation 
of a disjunctive set . Then a 
conventional B&B algorithm 
solves the MIP GAMS Input file 
generated by the application. 
 

OBSERVE the different syntax used to 
pose a two term disjunction where each 
term must satisfy a TRUE condition 
(handled by two different variables) 
against a two term disjunction with one  
TRUE term condition and the other with 
a FALSE one (handled by the same 
variable). 

Logic Propositions to establish 
relationships between the 
disjunctions terms 



LogMIP User’s Manual 
9 

 

2.3. NON-LINEAR EXAMPLE 
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Logic Propositions : 
Y1 ⇒⇒⇒⇒ Y3 ∨∨∨∨ Y4 ∨∨∨∨ Y5 
Y2 ⇒⇒⇒⇒ Y3 ∨∨∨∨ Y4 ∨∨∨∨ Y5 
Y3 ⇒⇒⇒⇒ Y1 ∨∨∨∨ Y2 
Y3 ⇒⇒⇒⇒ Y8 
Y4 ⇒⇒⇒⇒ Y1 ∨∨∨∨ Y2 
Y4 ⇒⇒⇒⇒ Y6 ∨∨∨∨ Y7 
Y5 ⇒⇒⇒⇒ Y1 ∨∨∨∨ Y2 

Y5 ⇒⇒⇒⇒ Y8 
Y6 ⇒⇒⇒⇒ Y4 
Y7 ⇒⇒⇒⇒ Y4 

Y8 ⇒⇒⇒⇒ Y3 ∨∨∨∨ Y5 ∨∨∨∨ (¬¬¬¬Y3 ∧∧∧∧¬¬¬¬Y5) 
Y1 ∨  Y2 

Y4 ∨  Y5 

Y6 ∨  Y7 
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LogMIP INPUT FILE for this example 
 
$TITLE APPLICATION OF THE LOGIC-BASED MINLP ALGORIT HM IN EXAMPLE #3 
* THE FORMULATION IS DISJUNCTIVE 
$OFFSYMXREF 
$OFFSYMLIST 
*  SELECT OPTIMAL PROCESS FROM WITHIN GIVEN SUPERST RUCTURE. 
* 
SETS   I      PROCESS STREAMS                 / 1*2 5 / 
       J      PROCESS UNITS                   / 1*8  / 
 
PARAMETERS   CV(I)     VARIABLE COST COEFF FOR PROC ESS UNITS - STREAMS 
       /  3 = -10  ,  5 = -15  ,  9 = -40,   19 =  25  , 21 =  35  , 25 = -35 
         17 = 80  , 14 =  15  , 10 =  15,    2 =  1    ,  4 =  1   , 18 = -65 
         20 = -60  , 22 = -80  /; 
 
 VARIABLES  PROF     PROFIT ; 
 
 BINARY VARIABLES    Y(J)         ; 
 POSITIVE VARIABLES  X(I) , CF(J); 
  
 EQUATIONS 
* EQUATIONS Independent of discrete choices 
* ------------------------------------------------- ------- 
 MASSBAL1, MASSBAL2, MASSBAL3, MASSBAL4, MASSBAL5, MASSBAL6, MASSBAL7, MASSBAL8 
 SPECS1, SPECS2, SPECS3, SPECS4 
 
* EQUATIONS allowing flow just IFF the unit EXISTS 
* -------------------------------------------------  
 LOGICAL1, LOGICAL2, LOGICAL3, LOGICAL4, LOGICAL5, LOGICAL6, LOGICAL7, LOGICAL8 
 
* DISJUNCTION'S CONSTRAINTS and EQUATIONS 
* --------------------------------------- 
 INOUT11, INOUT12, INOUT13, INOUT14  INPUT-OUTPUT R ELATIONS FOR PROCESS UNIT 1 
 INOUT21, INOUT22, INOUT23, INOUT24  INPUT-OUTPUT R ELATIONS FOR PROCESS UNIT 2 
 INOUT31, INOUT32, INOUT34           INPUT-OUTPUT R ELATIONS FOR PROCESS UNIT 3 
 INOUT41, INOUT42, INOUT43, INOUT44, INOUT45                FOR PROCESS UNIT 4 
 INOUT51, INOUT52, INOUT53, INOUT54  INPUT-OUTPUT R ELATIONS FOR PROCESS UNIT 5 
 INOUT61, INOUT62, INOUT63, INOUT64  INPUT-OUTPUT R ELATIONS FOR PROCESS UNIT 6 
 INOUT71, INOUT72, INOUT73, INOUT74  INPUT-OUTPUT R ELATIONS FOR PROCESS UNIT 7 
 INOUT81, INOUT82, INOUT83, INOUT84, INOUT85, INOUT 86       FOR PROCESS UNIT 8 
 OBJETIVO          OBJECTIVE FUNCTION DEFINITION ; 
 
* BOUNDS SECTION: 
* --------------- 
 X.UP('3')  =  2.0 ; 
 X.UP('5')  =  2.0 ; 
 X.UP('9')  =  2.0 ; 
 X.UP('10') =  1.0 ; 
 X.UP('14') =  1.0 ; 
 X.UP('17') =  2.0 ; 
 X.UP('19') =  2.0 ; 
 X.UP('21') =  2.0 ; 
 X.UP('25') =  3.0 ; 
 
 OPTIONS LIMCOL = 0   ; 
 OPTION LIMROW = 0    ; 
 OPTION OPTCR = 0     ; 
*DEFINITIONS of  EQUATIONS Independent of discrete choices 
 MASSBAL1..   X('13')         =E=  X('19') + X('21' )          ; 
 MASSBAL2..   X('17')         =E=  X('9') + X('16')  + X('25') ; 
 MASSBAL3..   X('11')         =E=  X('12') + X('15' )          ; 
 MASSBAL4..   X('3') + X('5') =E=  X('6') + X('11')            ; 
 MASSBAL5..   X('6')          =E=  X('7') + X('8')            ; 
 MASSBAL6..   X('23')         =E=  X('20') + X('22' )          ; 
 MASSBAL7..   X('23')         =E=  X('14') + X('24' )          ; 
 MASSBAL8..   X('1')          =E=  X('2') + X('4')            ; 
 SPECS1..     X('10')  =L=  0.8 * X('17')                     ; 
 SPECS2..     X('10')  =G=  0.4 * X('17')                     ; 
 SPECS3..     X('12')  =L=  5.0 * X('14')                     ; 
 SPECS4..     X('12')  =G=  2.0 * X('14')                     ; 
 
* DEFINITION of EQUATIONS allowing flow just IFF th e unit EXISTS 
 LOGICAL1..   X('2') + X('3')   =L=  10. * Y('1')          ; 
 LOGICAL2..   X('4') + X('5')   =L=  10. * Y('2')          ; 
 LOGICAL3..   X('9')   =L=  10. * Y('3')                   ; 
 LOGICAL4..   X('12') + X('14')  =L=  10. * Y('4')         ; 
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 LOGICAL5..   X('15')  =L=  10. * Y('5')                   ; 
 LOGICAL6..   X('19')  =L=  10. * Y('6')                   ; 
 LOGICAL7..   X('21')  =L=  10. * Y('7')                   ; 
 LOGICAL8..   X('10') + X('17')  =L=  10. * Y('8')         ; 
 
*DEFINITIONS of DISJUNCTION's EQUATIONS 
 INOUT11..   EXP(X('3')) -1. =E= X('2')            ; 
 INOUT14..   CF('1') =E= 5                         ; 
 INOUT12..   X('2') =E= 0                          ; 
 INOUT13..   X('3') =E= 0                          ; 
 INOUT21..   EXP(X('5')/1.2) -1. =E= X('4')        ; 
 INOUT24..   CF('2') =E= 8                         ; 
 INOUT22..   X('4') =E= 0                          ; 
 INOUT23..   X('5') =E= 0                          ; 
 INOUT31..   1.5 * X('9') + X('10') =E= X('8')     ; 
 INOUT34..   CF('3') =E= 6                         ; 
 INOUT32..   X('9') =E= 0                          ; 
 INOUT41..   1.25 * (X('12')+X('14')) =E= X('13')  ; 
 INOUT45..   CF('4') =E= 10                        ; 
 INOUT42..   X('12') =E= 0                         ; 
 INOUT43..   X('13') =E= 0                         ; 
 INOUT44..   X('14') =E= 0                         ; 
 INOUT51..   X('15') =E= 2. * X('16')              ; 
 INOUT54..   CF('5') =E= 6                         ; 
 INOUT52..   X('15') =E= 0                         ; 
 INOUT53..   X('16') =E= 0                         ; 
 INOUT61..   EXP(X('20')/1.5) -1. =E= X('19')      ; 
 INOUT64..   CF('6') =E= 7                         ; 
 INOUT62..   X('19') =E= 0                         ; 
 INOUT63..   X('20') =E= 0                         ; 
 INOUT71..   EXP(X('22')) -1. =E= X('21')          ; 
 INOUT74..   CF('7') =E= 4                         ; 
 INOUT72..   X('21') =E= 0                         ; 
 INOUT73..   X('22') =E= 0                         ; 
 INOUT81..   EXP(X('18')) -1. =E= X('10') + X('17') ; 
 INOUT86..   CF('8') =E= 5                         ; 
 INOUT82..   X('10') =E= 0                         ; 
 INOUT83..   X('17') =E= 0                         ; 
 INOUT84..   X('18') =E= 0                         ; 
 INOUT85..   X('25') =E= 0                         ; 
 
 OBJETIVO  .. PROF  =E= SUM(J,CF(J)) + SUM(I , X(I) *CV(I)) + 122 ; 
 
* BEGIN DECLARATIONS AND DEFINITIONS OF DISJUNCTION S (LOGMIP Section) 

$ONECHO > "%lm.info%" 
 
disjunction  d1, d2, d3, d4, d5, d6, d7, d8; 

 
d1 is  if Y('1') then 
         INOUT11; 
         INOUT14; 
        else 
         INOUT12; 
         INOUT13; 
        endif; 
 
d2 is  if Y('2') then 
         INOUT21; 
         INOUT24; 
        else 
         INOUT22; 
         INOUT23; 
        endif; 
 
d3 is if Y('3') then 
         INOUT31; 
         INOUT34; 
        else 
         INOUT32; 
        endif; 
 
 
d4 is if Y('4') then 
         INOUT41; 
         INOUT45; 
        else 
         INOUT42; 
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         INOUT43; 
         INOUT44; 
        endif; 
 
d5 is if Y('5') then 
         INOUT51; 
         INOUT54; 
        else 
         INOUT52; 
         INOUT53; 
        endif; 
 
d6 is if Y('6') then 
         INOUT61; 
         INOUT64; 
        else 
         INOUT62; 
         INOUT63; 
        endif; 
 
d7 is if Y('7') then 
         INOUT71; 
         INOUT74; 
        else 
         INOUT72; 
         INOUT73; 
        endif; 
 
d8 is  if Y('8') then 
         INOUT81; 
         INOUT86; 
        else 
         INOUT82; 
         INOUT83; 
         INOUT84; 
         INOUT85; 
        endif; 

 
 atmost(Y('1'), Y('2')); 
 atmost(Y('4'), Y('5')); 
 atmost(Y('6'), Y('7')); 
 
 Y('1') -> Y('3') or Y('4') or Y('5'); 
 Y('2') -> Y('3') or Y('4') or Y('5'); 
 Y('3') -> Y('8'); 
 Y('3') -> Y('1') or Y('2'); 
 Y('4') -> Y('1') or Y('2'); 
 Y('4') -> Y('6') or Y('7'); 
 Y('5') -> Y('1') or Y('2'); 
 Y('5') -> Y('8'); 
 Y('6') -> Y('4'); 
 Y('7') -> Y('4'); 
 
 
 
INIT TRUE Y('1'), Y('3'), Y('4'), Y('7'), Y('8'); 
INIT TRUE Y('1'), Y('3'), Y('5'), Y('8'); 
INIT TRUE Y('2'), Y('3'), Y('4'), Y('6'), Y('8');  
 
$OFFECHO 
* end logmip section 
 
 option minlp=LMLBOA; 
 
 MODEL EXAMPLE3  / ALL / ; 
 SOLVE EXAMPLE3 USING MINLP MINIMIZING PROF   ; 

LMLBOA is the solver for non-
linear problems, which applies the 
LOGIC_BASED OA algorithm. You need 
a NLP and a MIP solver installed 
together with GAMS to solve this 
problem.  

This is a special section for non-
linear problems. This is an 
initialization section needed by the 
LOGIC BASED OA algorithm. You must 
specify it. More references about this 
will be explained later, you can read 
also Turkay and Grossmann (1996a). 

Special sentences to establish 
relationships between Boolean 
variables 

Logic Propositions to establish 
relationships between the disjunctions 
terms 
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3. How to write a disjunctive model for LogMIP 
The algorithm to write a problem into GAMS is the following: 
 

a) Write in a GAMS input file (extension gms) the sets, scalars, parameters, 
variables, equations and constraints, and any other component necessary for 
the problem like if you were writing a mathematical problem. 

 
You must be familiar with the GAMS notation to do so.  
 
You must even declare and define in this section the equations and constraints 
for the disjunction terms.  
 
You must declare and define binary variables to handle disjunction terms, these 
variables will work as Boolean variables. Make sure to write at least a dummy 
equation  that uses them in order to avoid the GAMS compiler take out from the 
model if they are not used in other equation/constraint o f the model . 

 
b) Write in the same GAMS input file the sentences: 
 
     $ONECHO > "%lm.info%" 

 
$OFFECHO 
 
the dollar sign must be in the 1st column. You must write all three keywords.  
 
Between these two sentences you must include disjunction declarations and 
definitions. 
 
The complete section including the sentences above is a comment for GAMS 
compiler, so it is ignored by it. LogMIP language compiler compiles this section. 
 

c) Write between the sentences of section b) the disjunction declaration and 
definitions according to the rules of LogMIP language.  

 

4. Declaration and Definition of Disjunctions 
To write disjunctions there are two types of sentences:  

� declaration sentence 
� definition sentence.  

 
Disjunction can be single or no-domain or can have a domain such that you declare 
and define a set of disjunctions over the domain. 
The domain of the disjunction can be limited by applying the sentence with. 

 
4.1. Declaration Sentence 

The declaration sentence use de word DISJUNCTION as token. The syntax is: 
 
DISJUNCTION disjunction_identifier [ domain_identifier, …, doma in_identifier],  

      … , disjunction_identifier [ domain_identifier, …, doma in_identifier];  
 

A disjunction name as well as the domain name can have up to 32 characters 
long and must start with a letter. 
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It follows GAMS rules about naming. You can have several entries for 
disjunction declarations. 

      
Cannot use LogMIP reserved words, which are: disjun ction, bu, card, else, elsif, 
eq, ge, if, initial,  le, lt, ord, then, with 

 
The disjunction declaration/definition over a domain is optional.  
 
The domain must be previously defined in GAMS section declared as a SET or 
ALIAS.  
 

���� You cannot define a domain inside the LOGMIP sectio n. The 
reason is that the disjunction’s domain must be in 
concordance of the constraint’s domain, which is de fined in 
the GAMS section. 

 
Disjunction identifiers must be unique it cannot be equal to any other identifier in 
the GAMS or LogMIP section. 

 
Examples:  

DISJUNCTION a, b(i,j), disjunctionnamelong, d2(j), D2_d2 ; 
  

a, D2_d2 and disjunctionnamelong are single domain disjunctions. 
 
b(i,j) and d2(j) are disjunctions defined over a do main, i and j are SETS or 
ALIAS defined in the GAMS section. 
 

4.2. Definition sentence for single domain disjunct ions 
  

Given the following disjunction, which is a  
 
single domain disjunction with two terms that must satisfy only one 
condition (first term:TRUE – second term: FALSE) . 
 
 
 

  
 
The syntax for the definition is: 
 
disjunction_identifier  IS 

IF term_condition  THEN  
 constraint_identifier_1; 
 … 
 constraint_identifier_i; 
 … 
 constraint_identifier_n;  
ELSE 
 constraint_identifier_n+1; 
 … 
 constraint_identifier_r; 
 … 
 constraint_identifier_z; 
ENDIF; 

 

4CONSTRAINT

Y

3CONSTRAINT

Y

                                  








 ¬
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
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term_condition is the identifier of a binary variable defined in GAMS section 
which takes the role of a Boolean variable, (1:TRUE, 0:FALSE). 
 
Declaration and definition of constraint_identifier_1... constraint_identifier_z  
must be performed in GAMS section. 
 
Another example of single domain disjunction can be the following: 
 
Single domain disjunction with two terms. Each term  must satisfy a 
condition.  

The syntax for this case is: 
 
disjunction_identifier  IS 

IF term_condition_1  THEN  
 constraint_identifier_1; 
 … 
 constraint_identifier_n;  
ELSIF term_condition_2  THEN 
 constraint_identifier_n+1; 
 … 
 constraint_identifier_z; 
ENDIF; 

 
term_condition_1 and term_comdition_2 are binary variables identifiers 
defined in GAMS section which takes the role of a Boolean variable, (1:TRUE, 
0:FALSE). The identifiers must be different. 
 
Declaration and definition of constraint_identifier_1... constraint_identifier_z  
are performed in GAMS section. 
 
The same syntax can be applied for single domain disjunction with several 
terms. Each term must satisfy a condition.  
 
The main difference is that having a disjunction with more than two terms 
implies that you must have several ELSIF sections for this case. 
 
For both examples presented the following declarations and definitions apply. 

  
$ONECHO > "%lm.info%" 
Disjunction D1, D2; 
 
D1 IS 

IF Y THEN 
  CONSTRAINT3; 

ELSE 
  CONSTRAINT4; 

ENDIF; 
 

 

EQUATION2

2CONSTRAINT

Y

EQUATION1
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D2 IS 

IF Y1 THEN 
  CONSTRAINT1; 
  EQUATION1; 

ELSIF Y2 THEN 
  CONSTRAINT2; 
  EQUATION2; 

ENDIF; 
$OFFECHO 
 

���� It is not allowed in this release the capability of  defining a 
disjunction with several terms (with each term sati sfying a 
condition), and having an ELSE term, which applies when 
none of the previous term is TRUE. 

 
 It is not allowed a disjunction defined like: 

 IF..THEN..ELSIF..THEN..ELSIF..THEN..ELSE..ENDIF 
 

4.3.  Definition sentence for disjunctions defined over a domain 
 

As was mentioned in section 4.1. to define a disjunction over a domain you 
must first declare the domain (as a SET or ALIAS in GAMS section) and then 
declare the disjunction identifier over that domain.  

  
The simplest definition can be a disjunction defined over the complete domain, 
for example, suppose the following disjunction: 

In order to define it you must have in the GAMS section : 
 
Declaration of the domain: 
SET I /1*3/ 
       J /1*4/; 
 
Declaration of the constraints: 
EQUATION 
  CONSTRAINT1(I,J), CONSTRAINT2(I,J), EQUATION1(I,J), EQUATION2(I,J)  
  DUMMY; 
 
Declaration of variables for disjunction terms: 
BINARY VARIABLES Y(I,J); 
 
Definition of constraints: 
CONSTRAINT1(I,J).. define constraint1 here;  
CONSTRAINT2(I,J).. define constraint2 here; 
EQUATION1(I,J).. define equation1 here; 
EQUATION2(I,J).. define equation2 here; 

  

 

EQUATION2

2CONSTRAINT

Y

EQUATION1

1CONSTRAINT

Y
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 Dummy equation if needed: 
 DUMMY.. SUM(I, SUM(J, Y(I,J))) =G= 0; 
  
  
 In the LogMIP section you must have : 
  

$ONECHO > "%lm.info%" 
Disjunction D(I,J); 
 
D(I,J) IS 

IF Y(I,J) THEN 
  CONSTRAINT1(I,J) ; 
  EQUATION1(I,J) ; 

ELSE 
  CONSTRAINT2(I,J) ; 
  EQUATION2(I,J) ; 

ENDIF; 
 

$OFFECHO 
 

The previous define a total of 12 ( 3 times 4) disjunctions with two terms 
according to all possible combination of I times J. 
 
Another illustrative example could be: 

In order to define it you must have in the GAMS section : 
 
Declaration of domains: 
SET I /1*3/ 
       J /1*4/; 
ALIAS(J,K); 
 
Declaration of constraints: 
EQUATION 
  CONSTRAINT(I,J,K), DUMMY; 
 
Declaration of variables for the condition of disju nction terms: 
BINARY VARIABLES Y(I,J); 
 
Definition of constraints: 
CONSTRAINT1(I,J,K).. define constraint here;  

  
 Dummy equation if needed: 
 DUMMY.. SUM(I, SUM(J, Y(I,J))) =G= 0; 
 
 In the LogMIP section you must have : 
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$ ONECHO > "%lm.info%" 
Disjunction D(I,J); 
D(I,J) IS 

IF Y(I,J) THEN 
  CONSTRAINT(I,J,’1’) ; 
  CONSTRAINT(I,J,’2’) ; 

ELSE 
  CONSTRAINT(I,J,’3’) ; 
  CONSTRAINT(I,J,’4’) ; 

ENDIF; 
 

$OFFECHO 
In the same way than the previous example, with the sentences above a total of 
12 (3 times 4) disjunctions with two terms are defined according to all possible 
combinations of I times J. 
 

���� You must be aware that when constraint’s domains ar e 
expanded together the disjunction’s domains, constr aints 
must be previously defined in GAMS section. If the 
constraints are not defined over a particular domai n, LogMIP 
reports an error.  

 
4.4. Controlling the disjunction’s domain 

The constraint and disjunction’s domain can be controlled by the sentence with  
in conjunction with other operators: 
 

� Relational operators: 
 lt, <    : less than 
 le, <= : less than or equal to  
 eq, =  : equal  
 gt, >   : greater than  
 ge, <=: greater than or equal to 

 
� Logic operators: and, or.  

  
� Sets operators: 

 ord  : order of an item in the set 
 card : number of items in the set  
 in  : inclusion of a set item 

 
� Using subsets. 

 
 If you have defined a disjunction over a domain and you have also the 
disjunction’s variables and constraints defined over the same or different 
domain, you can have two situations, which are:  

� Constraints and variables whose domain is under the control of the 
disjunction domain.  

� Constraints and variables with uncontrolled domains, which must be 
defined in order to avoid semantic errors. 
If you need to control a set domain that is already controlled by the 

disjunction definition, you must use an ALIAS for that set and redefine the 
domain over that ALIAS. See example 3 for this purpose.  

In the following four sections some illustrative examples are presented 
with the intention of clarifying these matters. 
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4.4.1.  Example 1 

In this example, the disjunction domains are controlled using the with, ord and 
card clauses. The disjunction’s variables and constraints domains do not need 
an extra control. 

 
Given the following set definition in the GAMS Section: 

 
SET I /1*3/ , J /1*4/;  

 
and the following disjunction declaration and definition in LogMIP Section: 

 
$ ONECHO > "%lm.info%" 
Disjunction D(I,J); 
 
D(I, J) with  (ord (J) lt card  (J)) IS 

IF Y(I,J) THEN 
  CONSTRAINT(I,J) ; 
  CONSTRAINT(I,J) ; 

ELSE 
  CONSTRAINT(I,J) ; 
  CONSTRAINT(I,J) ; 

ENDIF; 
$OFFECHO 
 
Only the domain of set J is controlled. The values of J must be less than the 
cardinality of J, meaning that only 1, 2 and 3 are permitted. The expansion of 
the previous definition renders 9 disjunctions (3 times 3): D(‘1’,’1’), D(‘1’,’2’), 
D(‘1’,’3’), D(‘2’,’1’), D(‘2’,’2’), D(‘2’,’3’), D(‘3’,’1’), D(‘3’,’2’) and D(‘3’,’3’). 

���� Please note that although GAMS allows declaring var iables and 
equations without a domain, and then in the definit ion use them 
with domains, LogMIP compiler is not aware about th is situation 
and gives you an error or get stacked. We strongly suggest to 
explicitly declare all domains for every variable a nd constraint 
defined in the model. 

4.4.2.  Example 2 
In this example, the disjunction domains are controlled using the with and ord 
clauses. There exists a constraint with a domain not controlled by the 
disjunction that must be done in order to avoid semantic errors. 

 
Given the following set definition in the GAMS Section: 

 
SET I /1*3/ , J /1*4/,  K/1*2/;  
 
and the following disjunction declaration and definition in LogMIP Section: 
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$ ONECHO > "%lm.info%"  
Disjunction  D(i,j);  

D(i,j)  with  (ord (i) < ord (j)) IS 
         IF Y(i,j)  THEN 
                 CONSTR1(j); 
                 CONSTR2(i,j) ; 
         ELSE  
                 CONSTR3(j);  
                 CONSTR4(j,k) with (ord(k) ge 1);  
         ENDIF; 

$OFFECHO 

The previous example will generate the following disjunctions: 

D('1', '2'), D('1', '3'), D('1','4'), D('2', '3'), D('2', '4') y D('3', '4'). 

���� Observe that CONSTR4 is defined over sets j and k. In this case j 
does not have problems since its domain is controll ed by 
disjunction D. This is not the case of k, where you  must include a 
with  sentence to control the domain and avoid a semanti c error. 

For the second term of the first disjunction D(‘1’, ‘2’) the following constraints 
must be satisfied: CONSTR3(‘2’), CONSTR4(‘2’,’1’), CONSTR4(‘2’,’2’), 
CONSTR4(‘2’, ’3’). 

4.4.3.  Example 3 

This example is a modification of the previous, for this case we need to control 
a domain set which is already controlled. An ALIAS definition in the GAMS 
section is needed.  

Given the following definition in the GAMS Section 
 
SET I /1*3/ , J /1*4/; 
ALIAS (J,JJ) 
and the following disjunction declaration and definition in LogMIP Section: 
 
$ ONECHO > "%lm.info%"  
Disjunction  D(i,j);  

D(i,j)  with  (ord (i) < ord (j)) IS 
         IF Y(i,j)  THEN 
                 CONSTR1(j); 
                 CONSTR2(i,jj) with  (ord (jj) le 2); 
         ELSE  
                 CONSTR3(j);  
                 CONSTR4(j,k) with (ord(k) lt card(k));  
         ENDIF; 

$OFFECHO 
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Since the domain j is controlled by the disjunction, and for CONSTR2 you need 
a different control, the ALIAS definition allow that you can define a with clause 
over it. 
The previous example will generate the following disjunctions: 

D('1', '2'), D('1', '3'), D('1','4'), D('2', '3'), D('2', '4') y D('3', '4'). 

Note that: 

� for the first term of disjunction D(‘1’,’2’) the following constraints must be 
satisfied: CONSTR1(‘2’), CONSTR2(‘1’, ‘1’) and CONSTR2(‘1’, ‘2’).  

� for the first term of disjunction D(‘2’, ‘3’) the following constraints must be 
satisfied: CONSTRAINT1(‘3’), CONSTRAINT2(‘2’, ‘1’), CONSTRAINT2(‘2’, 
‘2’). 

� and so on... 

���� If you control the domain of a particular constrain t with the 
sentence with  you must be aware which domain expansion is 
assumed in order to avoid errors on it  

Observe that in the previous example it has been compared the order of 
a set item against an integer number, because the order is related to a position 
into the set, the position in which the item has been defined in the set. 

4.4.4.  Example 4 – Using a subset and the GAMS GDX  facilities 
Sometimes it is useful to restrict the disjunction domain by using a 

subset of the original set’s domain. This can be done using the definition of a 
subset and the GDX facilities in the GAMS Section. This possibility is available 
for GAMS versions 20.5 and up. There exist two versions of this implementation 
depending on the GAMS version that is running in the system. 
 

This method for controlling the set domain has the advantage of being 
the most general way of doing it, because you explicitly define the domain 
applicable for the disjunction.   

 
Suppose the example 1 of section 4.4.1 that must be defined over the 

following domain of I,J: (‘1’,’2’) , (‘2’,’3’) , (‘3’,’4’) , to specify this you must define 
in the GAMS section the following: 

 
SET I /1*3/ , J /1*4/;  
* 
*   Define the subset k 
* 
SET K(I,J) / 1.2, 2.3, 3.4 /; 
 
and the following disjunction declaration and definition in LogMIP Section: 
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$ ONECHO > "%lm.info%" 
Disjunction D(I,J); 
 
D(I, J) with  K(I,J) IS 

IF Y(I,J) THEN 
  CONSTRAINT(I,J) ; 
  CONSTRAINT(I,J) ; 

ELSE 
  CONSTRAINT(I,J) ; 
  CONSTRAINT(I,J) ; 

ENDIF; 
$OFFECHO 
 

  Note the sentence using the clause with in the definition of D(I,J) it is 
referencing the subset to define disjunctions D(‘1’,’2’), D(‘2’,’3’) and D(‘3’,‘4’). 

  If you are using GAMS IDE versions 20.5, 20.6, 20.7, 21.0, and 21.1 you 
must do the following: 

 
1. Include in GAMS INPUT file the following sentences: 

$ GDXOUT filename 
$ UNLOAD 

2. In the IDE GAMS parameters box (in the upper right section of the 
IDE window) write the following:  

gdx= filename 
 

The first two sentences generate in GAMS compilation time a 
filename.gdx file containing the symbols of the subsets needed by 
LogMIP to proceed with the compilation.  The sentence included in the 
IDE GAMS parameters box tells LogMIP the filename and file location in 
order to open it and read those symbols. 

 
Both filenames must be the same. 
 
For versions 21.2 and up the previous items 1. and 2. are not needed. 

  
 A larger example 

The following example corresponds to a jobshop scheduling problem 
(Raman and Grossmann, 1994). In this problem, there is a set of jobs i∈I that 
must be processed in a sequence of stages but not all jobs require all stages. 
Zero wait transfer policy is assumed between stages. To obtain a feasible 
solution is necessary to eliminate all clashes between jobs. It requires that no 
two jobs be performed at any stage at the same time.  This is expressed by the 
following disjunction: 
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where ti is the starting time of job i and τij the processing time of job i in stage j. 
The meaning of (1) is that either the job i precede job k or viceversa in the stage 
j where a clash can occur. The objective is to minimize the makespan. 
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The subset is used to prevent clashes at stage j between job i and k. In the 
following we include GAMS file for a jobshop scheduling problem to illustrate 
how to use a subset to control the disjunction domain. 

The LogMIP input file corresponding to this example is the following: 

 
SETS  I  jobs  / A, B, C, D, E, F, G / ; 
ALIAS(I,K); 
SET      J  stages    / 1*5 /; 
ALIAS(J,M); 
* 
* Subset L to prevent clashes at stage j between stage i and k 
* 
SET L(I,K,J) /A.B.3, A.B.5, A.C.1, A.D.3, A.E.3, A.E.5, A.F.1, A.F.3, 

A.G.5, B.C.2, B.D.2, B.D.3, B.E.2, B.E.3, B.E.5, B.F.3, B.G.2, 
B.G.5, C.D.2, C.D.4, C.E.2, C.F.1, C.F.4, C.G.2, C.G.4, D.E.2, 
D.E.3, D.F.3, D.F.4, D.G.2, D.G.4, E.F.3, E.G.2, E.G.5, 

      F.G.4 /    ; 
 
 
TABLE TAU(I,J) processing time of job i in stage j 
 
             1       2       3       4       5 
      A      3               5               2 
      B              3       4               3 
      C      6       3               6 
      D              8       5       1 
      E              4       6               2 
      F      2               5       7 
      G              8               5       4     ; 
 
VARIABLES    MS      makespan ; 
BINARY VARIABLES  Y(I,K,J)  sequencing variable between jobs i and k ; 
POSITIVE VARIABLES T(I) ; 
 
EQUATIONS 
           FEAS(I)          makespan greater than all processing times 
           NOCLASH1(I,K,J)   when i precedes k 
           NOCLASH2(I,K,J)   when k precedes i 
           DUMMY      ; 
 
FEAS(I).. MS =G= T(I) + SUM(M,TAU(I,M))  ; 
 
NOCLASH1(I,K,J)$((ORD(I) LT ORD(K)) AND L(I,K,J)) .. 
               T(I) + SUM(M$(ORD(M) LE ORD(J)), TAU(I,M)) =L= 
               T(K) + SUM(M$(ORD(M) LT ORD(J)), TAU(K,M)); 
 
 
NOCLASH2(I,K,J)$((ORD(I) LT ORD(K)) AND L(I,K,J)) .. 
               T(K) + SUM(M$(ORD(M) LE ORD(J)),TAU(K,M)) =L= 
               T(I) + SUM(M$(ORD(M) LT ORD(J)), TAU(I,M)); 
 
DUMMY.. SUM(I, SUM(K,SUM(J, Y(I,K,J)))) =G= 0; 
 
MODEL JOBSHOP / ALL / ; 
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$ ONECHO > "%lm.info%" 
 
DISJUNCTION D1(I,K,J); 
 

D1(I,K,J) with ((ord(I) lt ord(K)) and L(I,K,J))  IS 
IF Y(I,K,J) THEN 

        NOCLASH1(I,K,J); 
ELSE 

        NOCLASH2(I,K,J); 
ENDIF; 

 
$OFFECHO 
T.up(I)=100.; 
 
OPTION MIP      = LMBIGM; 
OPTION OPTCR    = 0.0 ; 
OPTION OPTCA    = 0.0 ; 
 
SOLVE JOBSHOP MINIMIZING MS USING MIP ; 

 
 
In the example shown above note that in LogMIP section disjunction D1 is 
defined over sets I,K,J their domain is controlled by the clause WITH using ord 
and card operators and the subset L, this is done in the same way than the 
definition of NOCLASH1 and NOCLASH2 constraints in GAMS section.  

 
 
4. 5.  Using the operator IN 

 
Using the operator IN as follows can perform the same constraints domain 
limitation for the Example 3: 

$ ONECHO > "%lm.info%"  

Disjunction  D(i,j);  

D(i,j)  with  (ord (i) < ord (j)) IS 
         IF Y(i,j)  THEN 
                 CONSTR1(j); 
                 CONSTR2(i,j);  
         ELSE  
                 CONSTR3(j);  
                 CONSTR4(j,k)  with  k IN (‘1’, ‘2’);  
         ENDIF; 

$OFFECHO 

���� The operator IN expands the domain just for the set items included between 
the parentheses after the operator. The set items must be enclosed by single 
quotation marks and separated by commas.  

 
Another example of the IN operator is when you define the domain over a value 
range as follows:  
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$ ONECHO > "%lm.info%"  

Disjunction  D(i,j);  

D(i,j)  with  (ord (i) < ord (j)) IS 
         IF Y(i,j)  THEN 
                 CONSTR1(j); 
                 CONSTR2(i,j);  
         ELSE  
                 CONSTR3(j);  
                 CONSTR4(j,k)  with  k IN (‘1’..‘2’);  
         ENDIF; 

$OFFECHO 

���� The above examples are just a few samples of what y ou can do for 
limiting the disjunction’s domain. You can define m ore difficult 
sentences by using the operators mentioned and the logical 
operators and/or.    

Some other examples could be: 

with  (ord (j) lt  card (i) and ord (k) not  1) 

with  (ord (I) lt ord (K)) and ( (ord (I) eq 1 and ord (K) eq 3 and ord (j) eq 1) or 

                          (ord (I) eq 1 and ord (K) eq 4 and ord (j) eq 4)) 

 

4.6.  Use of a DUMMY equation 
Although it is not mandatory, we recommend the user to write a dummy equation 
into the GAMS section for the binary variables that handle disjunction terms 
(disjunction conditions) in order to avoid that GAMS compiler eliminate those 
variables from the model (and from the matrix). It occurs when some or all 
variables are not used in other equations/constraints of the model. Suppose the 
following variables handling disjunction’s terms defined in GAMS section: 
 
Binary variables Y(J);  
 
If some or all variables of Y are not included in any equation or constraint defined 
in GAMS section they will be eliminated from the model, and LogMIP compiler 
will show an error even when they handle disjunction terms. To avoid that, you 
must write the following constraint: 
 
DUMMY.. SUM(J, Y(J)) =G= 0; 
 
which should be always satisfied. Another example could be: 

 
 Binary variables y, w, z; 
 
 DUMMY ..  y + w + z =G=0; 
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 A combination of the previous examples could be: 
 
 DUMMY.. y + w + z + SUM(j, Y(j)) =G= 0; 

5. Logic Propositions 
Logic propositions are used to pose relationships between the Boolean (Binary) 
variables handling the disjunctive terms.  
 
The operators defined for writing these sentences are: 

Symbol Meaning 
-> Implication 
<-> equivalence 
not negation 
and logical and 
or logical or 

 
Every logic proposition must have an implication or equivalence operator, 
otherwise a syntax error will occur. 
 
LogMIP transforms the logical propositions into a set of mathematical integer 
inequalities. Given the following set of logic propositions in LogMIP Section: 
Y('1') and not Y('2') -> not Y('3'); 
Y('2') -> not Y('3') ; 
Y('1') -> Y('3') or Y('4') or Y('5'); 
Y('2') -> Y('3') or Y('4') or Y('5'); 
Y('3') -> Y('8'); 
Y('3') -> Y('1') or Y('2'); 
Y('5') <-> Y('8'); 
 

They are transformed into the following set of inequalities written in GAMS 
language syntax: 
LOGPROP1.. -Y(1) +Y(2) -Y(3) =G= -1; 
LOGPROP2.. -Y(2) -Y(3) =G= -1; 
LOGPROP3..  -Y(1) +Y(3) +Y(4) +Y(5) =G= 0; 
LOGPROP4..  -Y(2) +Y(3) +Y(4) +Y(5) =G= 0; 
LOGPROP5..  -Y(3) +Y(8) =G= 0; 
LOGPROP6..  -Y(3) +Y(1) +Y(2) =G= 0; 
LOGPROP7..  -Y(5) +Y(8) =G= 0; 
LOGPROP8..  -Y(8) +Y(5) =G= 0; 

 
Then the disjunctive problem including this mathematical inequalities set is 
solved. 
 
The user can avoid the writing of logic propositions into LogMIP section by 
introducing directly the mathematical equivalent inequalities in the GAMS 
Section, it depends on how confident it is with one methodology or the other. 

6. Special Sentences 
The special sentences are sentences to establish single relationships between 
the Boolean (binary variables) handling the disjunction terms. They represent 
an easy and more natural way than logic propositions to express the most 
common relationships between the Boolean/binary variables.  
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There are three kind of special sentences: 
� atmost 
� atleast 
� exactly 

 
The syntax of these sentences are: 

      
atmost ( Boolean/binary variable list separated by comma, [number]) 
atleast  ( Boolean/binary variable list separated by comma, [number]) 
exactly ( Boolean/binary variable list separated by comma, [number]) 

   
� The meaning of atmost  is that the summation of the variable list 

must be less than or equal to number. 
� The meaning of atleast  is that the summation of the variable list 

must be greater than or equal to number. 
� The meaning of exactly  is that the summation of the variable list 

must be equal to number. 
[number] is optional, if no number is specified 1 is assumed. 
 
The Boolean/binary variable list can include single variables and also a variable 
defined over a domain. 
 
Example: 
Given the following set of special sentences in LOGMIP section 
atmost( Y('1'), Y('2'), Y('3'),2); 
atleast(Y('1'), Y('2'), Y('3'), 3); 
exactly(Y('1'), Y('2'), Y('3')); 
 
They are transformed into the following set of mathematical inequalities: 
LOGPROP1.. +Y(1) +Y(2) +Y(3) =L= 2; 
LOGPROP2.. +Y(1) +Y(2) +Y(3) =G= 3; 
LOGPROP3.. +Y(1) +Y(2) +Y(3) =E= 1; 

7. LogMIP compilation errors 

���� The syntax, semantic and some other errors detected  during the 
disjunction’s compilation phase are shown in the ex ecution 
window of the IDE. They are not included in the lis ting file (.lst file).  

8. SOLVERS 

���� LogMIP can solve linear/nonlinear disjunctive hybri d models that 
follow the formulation showed in section 2 of this manual. 
Disjunctive models are those where discrete decisio ns are written 
only in the form of disjunctions, while hybrid mode ls involve both 
disjunctions and mixed-integer constraints.  
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8.1.    Linear Solvers.  
     In figure 1 it is shown the solution algorithms for linear hybrid/disjunctive 
models. 

Fig. 1: solution algorithms for linear models 

The disjunctions defined in the model are transformed into mixed integer 
formulations by using one of the relaxations proposed: BigM or convex hull. The 
original model is transformed into a Mixed Integer Model that it is later solved by 
a Branch and Bound algorithm. References about the relaxations can be found 
in Balas(1979), Vecchietti and Grossmann(2002). 

Two solvers are available for linear solvers, which are:  

� LMBIGM : applies the BigM relaxation of a disjunctive set. 
� LMCHULL : applies the convex hull relaxation of a disjunctive set. 

To select one solver you must write in the GAMS input file one of the following 
sentence: 

OPTION MIP=LMBIGM; 

or 

OPTION MIP=LMCHULL; 

See the small examples provided in Section 2 of thi s manual. 

8.1.1. OPTIONS in LMBIGM solver 
  

You have two options when selecting the BigM relaxation solver (LMBIGM). 
Both options are related to value of the parameter M in the relaxations. This 
value is very important in order to reach the solution. The parameters are set up 
by the keywords DEFAULT  and DETERMINEM in the file “LMBIGM.opt”. 
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The way LMBIGM uses this parameters is same than the other solvers in 
GAMS: 
 
� In GAMS section and after defined the model you want to solve, you must 

write: 
model_name.optfile =1; 

� In the directory where GAMS files are included, write a file whose name is 
LMBIGM.opt  with the options you have selected.  

� In LMBIGM.opt you must write the options according to the following rules: 
DEFAULT is the default value for the M parameter value. After the keyword 
DEFAULT you must write a real number representing the value of M of your 
choice. Examples: DEFAULT  1000 , DEFAULT   5.e5. DETERMINEM is the 
option that can be turned off or turned on by writing 0 or 1 respectively, after 
the keyword DETERMINEM. If you turned it on, then the solver can 
calculate the best value of M. For doing that it is  very important to 
provide good bounds for all continuous variables  included in the model. 
Example: DETERMINEM 0. 

 
The default values for this option are DEFAULT 1.E4 and DETERMINEM 0. 

 
8.2. Nonlinear SOLVER 
 

In figure 2 it is shown the solution algorithms for nonlinear hybrid/disjunctive 
models. 

Fig. 2: solution algorithms for nonlinear models 

From nonlinear hybrid/disjunctive models you have three paths to arrive to the 
solution the first one is for models that have special two terms disjunctions that 
have the following formulation: 
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This special disjunction involves two terms handled by one variable, the first term 
apply when the Yi is true; while the second when it is false. In the second term a 
subset of variables must set to zero. 

 
The LOGIC BASED OA  algorithm (Turkay and Grossmann, 1996a) was mainly 
generated to solve the synthesis of chemical processes. It was applied to 
examples other than these types of problems. This is the only solution method 
working in this release of LOGMIP . The solver name is LMLBOA. 

 
The other two paths are not implemented yet.  

To select the LOGIC BASED OA algorithm you must write in the GAMS input file 
the following sentence: 

OPTION MINLP=LMLBOA; 

Observe that since this corresponds to a nonlinear model you must select 
the option for MINLP models. See the nonlinear exam ple provided in 
section 2 of this manual. 

 
8.2.1. INITIALIZATIONS 

For some nonlinear models in order to solve a particular problem the user 
should provide initializations. The meaning of the initializations is to fix the 
disjunctions terms that are true or false. The algorithm runs as many NLP 
subproblems as initializations is provided. By running these subproblems it is 
possible to generate the first MASTER MIP. More details about this initialization 
step can be found in Turkay and Grossmann (1996a).  
 
There is a special LogMIP language construction for this purpose. The 
initialization entries must be provided in LogMIP section. The keyword INIT is 
used. After that you must provide the list of disjunctions terms that are TRUE or 
FALSE by adding those words, and the list of variables that handle those terms, 
separated by commas and ended by a semicolon. Each INIT entry corresponds 
to an initialization set (a new NLP subproblem).  In the Nonlinear example 
showed in section 2, this initialization is provided: 
 
INIT TRUE Y('1'),   Y('3'),   Y('4'),   Y('7'),   Y ('8'); 

             INIT TRUE Y('1'),   Y('3'),   Y('5'),   Y('8'); 
INIT TRUE Y('2'),   Y('3'),   Y('4'),   Y('6'),   Y ('8'); 
 
The first initialization set specifies that the first term of disjunction 1, 3, 4, 7 and 
8 must be true, the second 1, 3, 5, y 8 and the third 2, 3, 4, 6 y 8. The algorithm 
executes three Non Linear Program problems by considering in the model the 
constraints of the disjunction terms that are TRUE. The resulting problem must 
be feasible, so the correct initialization sets must be provided. 
 
The initialization entries must be written after th e disjunction definitions. 
 
The same specification can be done by the following sentences: 
 
INIT FALSE Y('2'),   Y('5'),   Y('6'); 
INIT FALSE Y('2'),   Y('4'),   Y('6'),   Y('7'); 
INIT FALSE Y('1'),   Y('5'),   Y('7');  
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Instead of initializing by the TRUE terms, we can initialize by those that are 
FALSE. We can have also a combination of both initializations previously 
presented: 
 
INIT TRUE Y('1'),  Y('3'),  Y('4'),   Y('7'),   Y(' 8'); 
INIT TRUE Y('2'),  Y('3'),  Y('4'),   Y('6'),   Y(' 8');  
INIT FALSE Y('2'),  Y('4'),  Y('6'),  Y('7'); 
 
The order of the sentences is not important.  
If you want to specify all disjunctions terms you can use the word ALL. For 
example: 
INIT TRUE ALL; 
or 
INIT FALSE ALL; 
 

8.2.2 TERMINATION OPTIONS 
Since the OA Logic-Based algorithm is similar to the OA MINLP algorithm 
based on dividing the original problem into two subproblems: the NLP 
subproblem and the master MILP subproblem, and according to this, two 
termination options for the algorithm exist for the LogMIP non-linear solver. 
These options are similar to those implemented in DICOPT++ (MINLP GAMS 
solver).  

1. STOP on CROSSOVER  
2. STOP on NLP worsening 

        
Option 1  is appropriated for convex models. The meaning of this option is that 
the objective function obtained in the Master MILP subproblem is lower/upper 
the solution obtained in the NLP subproblem depending if the optimization 
direction is maximize/minimize the objective function. 
Option 2  is recommended for non-convex model, and the algorithm stops after 
the objective function obtained in the solution of consecutive NLP subproblems 
starts to deteriorate. 
The default is option 1.  
These options are implemented in the same way than DICOPT++, you must 
specify at the option file (LMLBOA.opt) STOP 1 or STOP 2 depending on the 
choice selected. 

9. Recommendations and Limitations. 
� Write the GAMS file in a single way following a sequence: declare SETS, 

VARIABLES and EQUATIONS at the beginning of the file, then start with the 
constraint and objective function definitions. Finally write the options, model and 
solution sentences. 

 
� Although GAMS is flexible about the declarations of the equation and variable 

domains (you can declare them or not), it is strongly recommended to explicitly 
declare all domains for every variable and constraint defined in the model. 
LogMIP compiler can not deal with variables and constraint not declared over a 
domain and then defined with a domain. 

 
� Write your entire model in a single file, do not use the include directive to import 

an external file in the model. 
 

� Note that constraints defined in the disjunctions are related with your declaration 
and definitions in the GAMS section. In this sense you cannot include in the 
disjunction the name of a constraint not previously defined. This is especially 
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important for constraints defined in the GAMS section over a domain controlled 
by the dollar sign ($). 

 
� A similar advice is necessary for variables handling disjunction terms. Do not 

forget to include the dummy equation for them. 
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