

UUSSEERR’’ SS MM AANNUUAALL

Aldo Vecchietti
aldovec@santafe-conicet.gov.ar

LogMIP User’s Manual
1

INDEX
1. Introduction 2
2. Disjunctive model formulation 2

2.1. SMALL EXAMPLE 1 3
2.2. SMALL EXAMPLE 2 7
2.3. NONLINEAR EXAMPLE 9

3. How to write a disjunctive model for LogMIP 14
4. Declaration and Definition of Disjunctions 14

4.1. Declaration Sentence 14
4.2. Definition Sentence for single domain disjunct ions 15
4.3. Definition Sentence for disjunctions defined over a domain 17
4.4. Controlling disjunction’s domain 19

4.4.1. Example 1 20
4.4.2. Example 2 20
4.4.3. Example 3 21
4.4.4. Example 4 - Using Subsets and the GAMS GDX Facilities 22

4.5. Using the operator IN 25
4.6. Use of a DUMMY Equation 26

5. Logic Propositions 27
6. Special Sentences 27
7. LogMIP compilation errors 28
8. Solvers 28

8.1 Linear Solvers 29
8.1.1. Options in LMBIGM Solver 29

8.2 Nonlinear Solver 30
8.2.1 Initializations 31
8.2.2 Termination options 32

9. Recommendations and limitations 32

10. References 33

LogMIP User’s Manual
2

1. Introduction

LogMIP 1.0 is a program for solving linear and nonlinear disjunctive programming
problems involving binary variables and disjunction definitions for modeling discrete
choices. While the modeling and solution of these disjunctive optimization problems
has not yet reached the stage of maturity and reliability as LP, MIP and NLP modeling,
these problems have a rich area of applications.

LogMIP 1.0 has been developed by A. Vecchietti, J.J. Gil and L. Catania at INGAR
(Santa Fe-Argentina) and Ignacio E. Grossmann at Carnegie Mellon University
(Pittsburgh-USA).

LogMIP is composed of:

� a language compiler for the declaration and definition of disjunctions and logic
constraints,

� solvers for linear and non-linear disjunctive models.

Those components are linked to GAMS. Both parts are supersets of GAMS language
and solvers respectively. LogMIP is not independent of GAMS. Besides the disjunction
and logic constraints declaration and definition, LogMIP needs the declaration and
definitions of scalars, sets, tables, variables, constraints, equations, etc. made in
GAMS language for the specifications and solution of a disjunctive problem.

2. Disjunctive model formulation
The models for LogMIP have the following general formulation:

0c, False}{True, Y ,{0,1}y ,R x

True (Y)

SD k

 c

0 (x)h

Y

a y A

0y D)x(r

0)x(g

.t.s

yd f(x) c Z min

k
mqn

ikk

ik

ik

D i

t

k
k

k

≥≥≥≥∈∈∈∈∈∈∈∈∈∈∈∈

====

∈∈∈∈
















====
≤≤≤≤∨∨∨∨

≤≤≤≤
≤≤≤≤++++

≤≤≤≤

++++++++∑∑∑∑====

∈∈∈∈

ΩΩΩΩ
γγγγ

 x , ck are continuous variables,
 y are binary variables (0-1),
 Yik are Boolean variables, to establish whether a disjunction term is true

or false
 Ω(Y) logic relationships between Boolean variables,
 f(x) objective function, which can be linear or non-linear,
 g(x) linear or non-linear inequalities/equalities independent of the discrete

choices,
 r(x)+Dy≤0 mixed-integer inequalities/equalities that can contain linear or non-linear

continuous terms (integer terms must be linear),
 Ay ≤ a linear integer inequalities/equalities
 dTy linear fixed cost terms.

LogMIP User’s Manual
3

We present three small examples in order to illustrate the meaning of the previous
disjunctive/hybrid formulation. The first two corresponds to linear models, the later to a
nonlinear disjunctive model.

2.1. SMALL EXAMPLE 1

This example corresponds to a Jobshop
(Jobshop scheduling) problem, having
three jobs (A,B,C) that must be executed
sequentially in three steps (1,2,3), but not
all jobs require all the stages, meaning that
the jobs will be executed in a subset of
stages. The processing time for each stage
is given by the following table:

Job/stage 1 2 3

A 5 - 3
B - 3 2
C 2 4 -

The objective is to obtain the sequence of
task, which minimizes the completion time
T. In order to obtain a feasible solution the
clashes between the jobs must be
eliminated.
For more details about this formulation see
Raman y Grossmann (1994).

LogMIP input file for this example

First Version – Using 6 binary variable
SET I /1*3/;
SET J /A,B,C/;
BINARY VARIABLES Y(I);
POSITIVE VARIABLES X(J),T;
VARIABLE Z;
EQUATIONS EQUAT1, EQUAT2, EQUAT3,
 EQUAT4, EQUAT5, EQUAT6,
 EQUAT7, EQUAT8, EQUAT9, DUMMY,

OBJECTIVE;

EQUAT1.. T =G= X('A') + 8;
EQUAT2.. T =G= X('B') + 5;
EQUAT3.. T =G= X('C') + 6;
EQUAT4.. X('A')-X('C')+ 5 =L= 0;
EQUAT5.. X('C')-X('A')+ 2 =L= 0;
EQUAT6.. X('B')-X('C')+ 1 =L= 0;
EQUAT7.. X('C')-X('B')+ 6 =L= 0;
EQUAT8.. X('A')-X('B')+ 5 =L= 0;
EQUAT9.. X('B')-X('A') =L= 0;
DUMMY.. SUM(I, Y(I)) =G= 0;
OBJECTIVE.. Z =E= T;

X.UP(J)=20.;

GAMS components
declaration section.

GAMS equations and
constraints definition.

Dummy equation just to avoid
the elimination of variable Y
from the model, which handles
disjunction terms.

Constraints independent
of discrete choices
(disjunctions)

Constraints for
discrete choices
(disjunctions)

Constraint definitions
corresponding to disjunction
terms are defined here.

 .3,2,1k , }false,true{Y

 0x ,x ,x,T

 0xx

Y

05xx

Y

06xx

Y

01xx

Y

02xx

Y

05xx

Y

6x T

5x T

8x T .a.s

TZmin

k

CBA

AB

3

BA

3

BC

2

CB

2

AC

1

CA

1

C

B

A

====∈∈∈∈
≥≥≥≥










≤≤≤≤−−−−
¬¬¬¬

∨∨∨∨








≤≤≤≤++++−−−−










≤≤≤≤++++−−−−
¬¬¬¬

∨∨∨∨








≤≤≤≤++++−−−−










≤≤≤≤++++−−−−
¬¬¬¬

∨∨∨∨








≤≤≤≤++++−−−−

++++≥≥≥≥
++++≥≥≥≥
++++≥≥≥≥

====

LogMIP User’s Manual
4

$ONECHO > "%lm.info%"
DISJUNCTION D1,D2,D3;

D1 IS
IF (Y('1')) THEN
 EQUAT4;

ELSE
 EQUAT5;

ENDIF;

D2 IS

IF(Y('2')) THEN
 EQUAT6;

ELSE
 EQUAT7;

ENDIF;

D3 IS

IF(Y('3')) THEN
 EQUAT8;

ELSE
 EQUAT9;

ENDIF;
$OFFECHO

OPTION MIP=LMCHULL;
MODEL PEQUE1 /ALL/;
SOLVE PEQUE1 USING MIP MINIMIZING Z;

Second Version – Using 3 binary variable
SET I /1*3/;
SET J /A,B,C/;
BINARY VARIABLES Y(I);
POSITIVE VARIABLES X(J),T;
VARIABLE Z;
EQUATIONS EQUAT1, EQUAT2, EQUAT3,
 EQUAT4, EQUAT5, EQUAT6,
 EQUAT7, EQUAT8, EQUAT9, DUMMY,

OBJECTIVE;

EQUAT1.. T =G= X('A') + 8;
EQUAT2.. T =G= X('B') + 5;
EQUAT3.. T =G= X('C') + 6;
EQUAT4.. X('A')-X('C')+ 5 =L= 0;
EQUAT5.. X('C')-X('A')+ 2 =L= 0;
EQUAT6.. X('B')-X('C')+ 1 =L= 0;
EQUAT7.. X('C')-X('B')+ 6 =L= 0;
EQUAT8.. X('A')-X('B')+ 5 =L= 0;
EQUAT9.. X('B')-X('A') =L= 0;
DUMMY.. SUM(I, Y(I)) =G= 0;
OBJECTIVE.. Z =E= T;

X.UP(J)=20.;

In this section are defined
the disjunctions according
to the syntax defined for
LogMIP.
This section is compiled by
LogMIP and ignored by GAMS.

LMCHULL is the solver, which
generates a MIP problem by
applying the convex hull
relaxation of a disjunctive
set . Then a conventional B&B
algorithm solves the MIP GAMS
Input file generated by the
application.

GAMS components
declaration section.

GAMS equations and
constraints definition.

Dummy equation just to avoid
the elimination of variable Y
from the model, which handles
disjunction terms.

Constraints independent
of discrete choices
(disjunctions)

Constraints for
discrete choices
(disjunctions)

Constraint definitions
corresponding to disjunction
terms are defined here.

LogMIP User’s Manual
5

$ONECHO > "%lm.info%"
DISJUNCTION D1,D2,D3;

 D1 IS
IF Y('A') THEN
 EQUAT4;
ELSE
 EQUAT5;
ENDIF;

 D2 is
IF Y('B') THEN
 EQUAT6;
ELSE
 EQUAT7;
ENDIF;

 D3 IS IF Y('C') THEN
 EQUAT8;
ELSE
 EQUAT9;
ENDIF;

$OFFECHO

OPTION MIP=LMBIGM;
OPTION LIMCOL=0;
OPTION LIMROW=0;
OPTION OPTCR=0.0;
MODEL PEQUE1 /ALL/;
SOLVE PEQUE1 USING MIP MINIMIZING Z;

Third Version – Alex Meeraus compact version
$TITLE LOGMIP USER'S MANUAL SMALL EXAMPLE 1
SETS J JOBS / A, B, C /
 S STAGES / 1*3 /
 GG(J,J) UPPER TRIANGLE
ALIAS (J,JJ),(S,SS);

TABLE P(J,S) PROCESSING TIME
 1 2 3
 A 5 3
 B 3 2
 C 2 4

PARAMETER C(J,S) STAGE COMPLETION TIME
 W(J,JJ) MAXIMUM PAIRWISE WAITING TIME
 PT(J) TOTAL PROCESSING TIME
 BIG THE FAMOUS BIG M;

GG(J,JJ) = ORD(J) < ORD(JJ);

C(J,S) = SUM(SS$(ORD(SS)<=ORD(S)), P(J,SS));
W(J,JJ) = SMAX(S, C(J,S) - C(JJ,S-1));
PT(J) = SUM(S, P(J,S));
BIG = SUM(J, PT(J));

VARIABLES T COMPLETION TIME
 X(J) JOB STARTING TIME
 Y(J,JJ) JOB PRECEDENCE

POSITIVE VARIABLE X; BINARY VARIABLE Y;

EQUATIONS COMP(J) JOB COMPLETION TIME

LMBIGM is the solver, which
generates a MIP problem by
applying the Big-M relaxation
of a disjunctive set . Then a
conventional B&B algorithm
solves the MIP GAMS Input file
generated by the application.

LogMIP User’s Manual
6

 SEQ(J,JJ) JOB SEQUENCING J BEORE JJ
 DUMMY FORCE NAMES INTO MODEL;

COMP(J).. T =G= X(J) + PT(J);

SEQ(J,JJ)$(ORD(J) <> ORD(JJ)).. X(J) + W(J,JJ) =L= X(JJ);

DUMMY.. SUM(GG(J,JJ), Y(J,JJ)) =G= 0;

X.UP(J) = BIG;

MODEL M / ALL /;

$ONECHO > "%lm.info%"
DISJUNCTION D(J,JJ);

D(J,JJ) WITH ORD(J) < ORD(JJ) IS
IF Y(J,JJ)
 THEN SEQ(J,JJ);
 ELSE SEQ(JJ,J);
ENDIF;

$OFFECHO
OPTION MIP=LMBIGM;

SOLVE M USING MIP MINIMIZING T;

LogMIP User’s Manual
7

2.2. SMALL EXAMPLE 2

Small example for illustration purpose. It is
composed by two disjunctions each one
with two terms.

Each term of the first disjunction is handled
by different variables. The first term is true
if Y1 is true; the second term of the first
disjunction is true if Y 2 is true.

The second disjunction is handled just for
one variable: Y3. The first term apply if Y 3 is
true, the second if Y 3 is false.

The logic propositions indicates that:
1. If Y1 is true and Y 2 false it implies that

Y3 must be false.
2. Y2 and Y3 cannot be both true at the

same time.

LogMIP input file for this example

SET I /1*3/;
SET J /1*2/;
SCALAR M /100/;
BINARY VARIABLES Y(I);
POSITIVE VARIABLES X(J), C;
VARIABLE Z;
EQUATIONS EQUAT1, EQUAT2, EQUAT3, EQUAT4, EQUAT5, EQUAT6,
 DUMMY, OBJECTIVE;

EQUAT1.. X('2') =L= X('1') - 2;
EQUAT2.. C =E= 5;
EQUAT3.. X('2') =G= 2;
EQUAT4.. C =E= 7;
EQUAT5.. X('1')-X('2') =L= 1 ;
EQUAT6.. X('1') =E= M * Y('3');

DUMMY.. SUM(I, Y(I)) =G= 0;

OBJECTIVE.. Z =E= C + 2*X('1') + X('2');
X.UP(J)=5;
C.UP=7;

1,2,3jfalse},{true,Y

0c 5,x0 5,x0

Y Y

Y Y

Y Y Y

0x

Y

1xx

Y

7c

0x2

Y

5c

02xx

Y

 :s.a.

x 2x c min

j

21

23

32

321

1

3

21

3

2

2

21

1

21

====∈∈∈∈

≥≥≥≥≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤

¬¬¬¬⇒⇒⇒⇒

¬¬¬¬⇒⇒⇒⇒

¬¬¬¬⇒⇒⇒⇒¬¬¬¬∧∧∧∧










====
¬¬¬¬

∨∨∨∨








≤≤≤≤−−−−

















====
≤≤≤≤−−−−∨∨∨∨

















====
≤≤≤≤++++++++−−−−

++++++++

LogMIP User’s Manual
8

$ONECHO > "%lm.info%"

DISJUNCTION D1,D2;

D1 IS
IF Y('1') THEN
 EQUAT1;
 EQUAT2;
ELSIF Y('2')THEN
 EQUAT3;
 EQUAT4;
ENDIF;

D2 IS
IF Y('3') THEN
 EQUAT5;
ELSE
 EQUAT6;
ENDIF;
Y('1') -> not Y('3');
Y('2') -> not Y('3') ;
Y('3') -> not Y('2') ;

$OFFECHO

OPTION MIP=LMBIGM
MODEL PEQUE2 /ALL/;
SOLVE PEQUE2 USING MIP MINIMIZING Z;

LMBIGM is the solver, which
generates a MIP problem by
applying the BigM relaxation
of a disjunctive set . Then a
conventional B&B algorithm
solves the MIP GAMS Input file
generated by the application.

OBSERVE the different syntax used to
pose a two term disjunction where each
term must satisfy a TRUE condition
(handled by two different variables)
against a two term disjunction with one
TRUE term condition and the other with
a FALSE one (handled by the same
variable).

Logic Propositions to establish
relationships between the
disjunctions terms

LogMIP User’s Manual
9

2.3. NON-LINEAR EXAMPLE

0 x2 - x,0 x5 - x

0 x4.0 - x,0 x8.0 - x

ionsSpecificat

 x x x, x x x

 x x x x

 x x x, x x x

 x x x x

 x xx, x xx

Balances Mass

.t.s

122 x ac Z min

14121412

17101710

241423232220

1725169

211913151211

11653

876421

8

1k

T
k

≥≥≥≥≤≤≤≤
≥≥≥≥≤≤≤≤

++++========++++
====++++++++

++++====++++====
++++====++++

++++====++++====

++++∑∑∑∑ ++++====
====

Synthesis of 8 processes

1

2

6

7

4

3

5 8

x1

x4

x6

x21

x19

x13

x14

x11

x7

x8

x12

x15

x9

x16 x17

x25

x18

x10

x20

x23x22 x24x5

x3x2

Y1

Y8

Y7

Y6

Y4

Y5

Y3

Y2

LogMIP User’s Manual
10

















====
============

¬¬¬¬
∨∨∨∨

















====
====++++

















====
========

¬¬¬¬
∨∨∨∨

















====
====++++

















====
========

¬¬¬¬
∨∨∨∨

















====
≤≤≤≤

















====
========

¬¬¬¬
∨∨∨∨

















====
≤≤≤≤

 0 c

0 x x x

Y

10c

 0 - x)x x(25.1

Y

 0 c

 x x,0 x

Y

6c

 0x -x x1.5

Y

0 c

 0 x x

Y

5c

0x -1 -)2.1/xexp(

Y

0 c

 0 x x

Y

5c

 0x -1 -)xexp(

Y

nsDisjunctio

4

141312

4

4

131412

4

3

1089

3

3

8109

3

2

54

2

2

45

2

1

23

1

1

23

1

















====
========

¬¬¬¬
∨∨∨∨

















====
≤≤≤≤

















====
========

¬¬¬¬
∨∨∨∨

















====
====

0 c

 0 x x

Y

7c

0- x1-)5.1/xexp(

Y

 0 c

 0 x x

Y

6c

 0x 2-x

Y

6

2019

6

6

1920

6

5

1615

5

5

1615

5

















=
===

¬
∨
















=
≤

















=
==

¬
∨
















=
≤

0 c

 0 xxx

Y

5c

0- x- x1-)xexp(

Y

0 c

 0 x x

Y

4c

 0- x1-)xexp(

Y

8

181710

8

8

171018

8

7

2221

7

7

2122

7

Logic Propositions :
Y1 ⇒⇒⇒⇒ Y3 ∨∨∨∨ Y4 ∨∨∨∨ Y5
Y2 ⇒⇒⇒⇒ Y3 ∨∨∨∨ Y4 ∨∨∨∨ Y5
Y3 ⇒⇒⇒⇒ Y1 ∨∨∨∨ Y2
Y3 ⇒⇒⇒⇒ Y8
Y4 ⇒⇒⇒⇒ Y1 ∨∨∨∨ Y2
Y4 ⇒⇒⇒⇒ Y6 ∨∨∨∨ Y7
Y5 ⇒⇒⇒⇒ Y1 ∨∨∨∨ Y2

Y5 ⇒⇒⇒⇒ Y8
Y6 ⇒⇒⇒⇒ Y4
Y7 ⇒⇒⇒⇒ Y4

Y8 ⇒⇒⇒⇒ Y3 ∨∨∨∨ Y5 ∨∨∨∨ (¬¬¬¬Y3 ∧∧∧∧¬¬¬¬Y5)
Y1 ∨ Y2

Y4 ∨ Y5

Y6 ∨ Y7

LogMIP User’s Manual
11

LogMIP INPUT FILE for this example

$TITLE APPLICATION OF THE LOGIC-BASED MINLP ALGORIT HM IN EXAMPLE #3
* THE FORMULATION IS DISJUNCTIVE
$OFFSYMXREF
$OFFSYMLIST
* SELECT OPTIMAL PROCESS FROM WITHIN GIVEN SUPERST RUCTURE.
*
SETS I PROCESS STREAMS / 1*2 5 /
 J PROCESS UNITS / 1*8 /

PARAMETERS CV(I) VARIABLE COST COEFF FOR PROC ESS UNITS - STREAMS
 / 3 = -10 , 5 = -15 , 9 = -40, 19 = 25 , 21 = 35 , 25 = -35
 17 = 80 , 14 = 15 , 10 = 15, 2 = 1 , 4 = 1 , 18 = -65
 20 = -60 , 22 = -80 /;

 VARIABLES PROF PROFIT ;

 BINARY VARIABLES Y(J) ;
 POSITIVE VARIABLES X(I) , CF(J);

 EQUATIONS
* EQUATIONS Independent of discrete choices
* --- -------
 MASSBAL1, MASSBAL2, MASSBAL3, MASSBAL4, MASSBAL5, MASSBAL6, MASSBAL7, MASSBAL8
 SPECS1, SPECS2, SPECS3, SPECS4

* EQUATIONS allowing flow just IFF the unit EXISTS
* ---
 LOGICAL1, LOGICAL2, LOGICAL3, LOGICAL4, LOGICAL5, LOGICAL6, LOGICAL7, LOGICAL8

* DISJUNCTION'S CONSTRAINTS and EQUATIONS
* ---------------------------------------
 INOUT11, INOUT12, INOUT13, INOUT14 INPUT-OUTPUT R ELATIONS FOR PROCESS UNIT 1
 INOUT21, INOUT22, INOUT23, INOUT24 INPUT-OUTPUT R ELATIONS FOR PROCESS UNIT 2
 INOUT31, INOUT32, INOUT34 INPUT-OUTPUT R ELATIONS FOR PROCESS UNIT 3
 INOUT41, INOUT42, INOUT43, INOUT44, INOUT45 FOR PROCESS UNIT 4
 INOUT51, INOUT52, INOUT53, INOUT54 INPUT-OUTPUT R ELATIONS FOR PROCESS UNIT 5
 INOUT61, INOUT62, INOUT63, INOUT64 INPUT-OUTPUT R ELATIONS FOR PROCESS UNIT 6
 INOUT71, INOUT72, INOUT73, INOUT74 INPUT-OUTPUT R ELATIONS FOR PROCESS UNIT 7
 INOUT81, INOUT82, INOUT83, INOUT84, INOUT85, INOUT 86 FOR PROCESS UNIT 8
 OBJETIVO OBJECTIVE FUNCTION DEFINITION ;

* BOUNDS SECTION:
* ---------------
 X.UP('3') = 2.0 ;
 X.UP('5') = 2.0 ;
 X.UP('9') = 2.0 ;
 X.UP('10') = 1.0 ;
 X.UP('14') = 1.0 ;
 X.UP('17') = 2.0 ;
 X.UP('19') = 2.0 ;
 X.UP('21') = 2.0 ;
 X.UP('25') = 3.0 ;

 OPTIONS LIMCOL = 0 ;
 OPTION LIMROW = 0 ;
 OPTION OPTCR = 0 ;
*DEFINITIONS of EQUATIONS Independent of discrete choices
 MASSBAL1.. X('13') =E= X('19') + X('21') ;
 MASSBAL2.. X('17') =E= X('9') + X('16') + X('25') ;
 MASSBAL3.. X('11') =E= X('12') + X('15') ;
 MASSBAL4.. X('3') + X('5') =E= X('6') + X('11') ;
 MASSBAL5.. X('6') =E= X('7') + X('8') ;
 MASSBAL6.. X('23') =E= X('20') + X('22') ;
 MASSBAL7.. X('23') =E= X('14') + X('24') ;
 MASSBAL8.. X('1') =E= X('2') + X('4') ;
 SPECS1.. X('10') =L= 0.8 * X('17') ;
 SPECS2.. X('10') =G= 0.4 * X('17') ;
 SPECS3.. X('12') =L= 5.0 * X('14') ;
 SPECS4.. X('12') =G= 2.0 * X('14') ;

* DEFINITION of EQUATIONS allowing flow just IFF th e unit EXISTS
 LOGICAL1.. X('2') + X('3') =L= 10. * Y('1') ;
 LOGICAL2.. X('4') + X('5') =L= 10. * Y('2') ;
 LOGICAL3.. X('9') =L= 10. * Y('3') ;
 LOGICAL4.. X('12') + X('14') =L= 10. * Y('4') ;

LogMIP User’s Manual
12

 LOGICAL5.. X('15') =L= 10. * Y('5') ;
 LOGICAL6.. X('19') =L= 10. * Y('6') ;
 LOGICAL7.. X('21') =L= 10. * Y('7') ;
 LOGICAL8.. X('10') + X('17') =L= 10. * Y('8') ;

*DEFINITIONS of DISJUNCTION's EQUATIONS
 INOUT11.. EXP(X('3')) -1. =E= X('2') ;
 INOUT14.. CF('1') =E= 5 ;
 INOUT12.. X('2') =E= 0 ;
 INOUT13.. X('3') =E= 0 ;
 INOUT21.. EXP(X('5')/1.2) -1. =E= X('4') ;
 INOUT24.. CF('2') =E= 8 ;
 INOUT22.. X('4') =E= 0 ;
 INOUT23.. X('5') =E= 0 ;
 INOUT31.. 1.5 * X('9') + X('10') =E= X('8') ;
 INOUT34.. CF('3') =E= 6 ;
 INOUT32.. X('9') =E= 0 ;
 INOUT41.. 1.25 * (X('12')+X('14')) =E= X('13') ;
 INOUT45.. CF('4') =E= 10 ;
 INOUT42.. X('12') =E= 0 ;
 INOUT43.. X('13') =E= 0 ;
 INOUT44.. X('14') =E= 0 ;
 INOUT51.. X('15') =E= 2. * X('16') ;
 INOUT54.. CF('5') =E= 6 ;
 INOUT52.. X('15') =E= 0 ;
 INOUT53.. X('16') =E= 0 ;
 INOUT61.. EXP(X('20')/1.5) -1. =E= X('19') ;
 INOUT64.. CF('6') =E= 7 ;
 INOUT62.. X('19') =E= 0 ;
 INOUT63.. X('20') =E= 0 ;
 INOUT71.. EXP(X('22')) -1. =E= X('21') ;
 INOUT74.. CF('7') =E= 4 ;
 INOUT72.. X('21') =E= 0 ;
 INOUT73.. X('22') =E= 0 ;
 INOUT81.. EXP(X('18')) -1. =E= X('10') + X('17') ;
 INOUT86.. CF('8') =E= 5 ;
 INOUT82.. X('10') =E= 0 ;
 INOUT83.. X('17') =E= 0 ;
 INOUT84.. X('18') =E= 0 ;
 INOUT85.. X('25') =E= 0 ;

 OBJETIVO .. PROF =E= SUM(J,CF(J)) + SUM(I , X(I) *CV(I)) + 122 ;

* BEGIN DECLARATIONS AND DEFINITIONS OF DISJUNCTION S (LOGMIP Section)

$ONECHO > "%lm.info%"

disjunction d1, d2, d3, d4, d5, d6, d7, d8;

d1 is if Y('1') then
 INOUT11;
 INOUT14;
 else
 INOUT12;
 INOUT13;
 endif;

d2 is if Y('2') then
 INOUT21;
 INOUT24;
 else
 INOUT22;
 INOUT23;
 endif;

d3 is if Y('3') then
 INOUT31;
 INOUT34;
 else
 INOUT32;
 endif;

d4 is if Y('4') then
 INOUT41;
 INOUT45;
 else
 INOUT42;

LogMIP User’s Manual
13

 INOUT43;
 INOUT44;
 endif;

d5 is if Y('5') then
 INOUT51;
 INOUT54;
 else
 INOUT52;
 INOUT53;
 endif;

d6 is if Y('6') then
 INOUT61;
 INOUT64;
 else
 INOUT62;
 INOUT63;
 endif;

d7 is if Y('7') then
 INOUT71;
 INOUT74;
 else
 INOUT72;
 INOUT73;
 endif;

d8 is if Y('8') then
 INOUT81;
 INOUT86;
 else
 INOUT82;
 INOUT83;
 INOUT84;
 INOUT85;
 endif;

 atmost(Y('1'), Y('2'));
 atmost(Y('4'), Y('5'));
 atmost(Y('6'), Y('7'));

 Y('1') -> Y('3') or Y('4') or Y('5');
 Y('2') -> Y('3') or Y('4') or Y('5');
 Y('3') -> Y('8');
 Y('3') -> Y('1') or Y('2');
 Y('4') -> Y('1') or Y('2');
 Y('4') -> Y('6') or Y('7');
 Y('5') -> Y('1') or Y('2');
 Y('5') -> Y('8');
 Y('6') -> Y('4');
 Y('7') -> Y('4');

INIT TRUE Y('1'), Y('3'), Y('4'), Y('7'), Y('8');
INIT TRUE Y('1'), Y('3'), Y('5'), Y('8');
INIT TRUE Y('2'), Y('3'), Y('4'), Y('6'), Y('8');

$OFFECHO
* end logmip section

 option minlp=LMLBOA;

 MODEL EXAMPLE3 / ALL / ;
 SOLVE EXAMPLE3 USING MINLP MINIMIZING PROF ;

LMLBOA is the solver for non-
linear problems, which applies the
LOGIC_BASED OA algorithm. You need
a NLP and a MIP solver installed
together with GAMS to solve this
problem.

This is a special section for non-
linear problems. This is an
initialization section needed by the
LOGIC BASED OA algorithm. You must
specify it. More references about this
will be explained later, you can read
also Turkay and Grossmann (1996a).

Special sentences to establish
relationships between Boolean
variables

Logic Propositions to establish
relationships between the disjunctions
terms

LogMIP User’s Manual
14

3. How to write a disjunctive model for LogMIP
The algorithm to write a problem into GAMS is the following:

a) Write in a GAMS input file (extension gms) the sets, scalars, parameters,
variables, equations and constraints, and any other component necessary for
the problem like if you were writing a mathematical problem.

You must be familiar with the GAMS notation to do so.

You must even declare and define in this section the equations and constraints
for the disjunction terms.

You must declare and define binary variables to handle disjunction terms, these
variables will work as Boolean variables. Make sure to write at least a dummy
equation that uses them in order to avoid the GAMS compiler take out from the
model if they are not used in other equation/constraint o f the model .

b) Write in the same GAMS input file the sentences:

 $ONECHO > "%lm.info%"

$OFFECHO

the dollar sign must be in the 1st column. You must write all three keywords.

Between these two sentences you must include disjunction declarations and
definitions.

The complete section including the sentences above is a comment for GAMS
compiler, so it is ignored by it. LogMIP language compiler compiles this section.

c) Write between the sentences of section b) the disjunction declaration and
definitions according to the rules of LogMIP language.

4. Declaration and Definition of Disjunctions
To write disjunctions there are two types of sentences:

� declaration sentence
� definition sentence.

Disjunction can be single or no-domain or can have a domain such that you declare
and define a set of disjunctions over the domain.
The domain of the disjunction can be limited by applying the sentence with.

4.1. Declaration Sentence

The declaration sentence use de word DISJUNCTION as token. The syntax is:

DISJUNCTION disjunction_identifier [domain_identifier, …, doma in_identifier],

 … , disjunction_identifier [domain_identifier, …, doma in_identifier];

A disjunction name as well as the domain name can have up to 32 characters
long and must start with a letter.

LogMIP User’s Manual
15

It follows GAMS rules about naming. You can have several entries for
disjunction declarations.

Cannot use LogMIP reserved words, which are: disjun ction, bu, card, else, elsif,
eq, ge, if, initial, le, lt, ord, then, with

The disjunction declaration/definition over a domain is optional.

The domain must be previously defined in GAMS section declared as a SET or
ALIAS.

���� You cannot define a domain inside the LOGMIP sectio n. The
reason is that the disjunction’s domain must be in
concordance of the constraint’s domain, which is de fined in
the GAMS section.

Disjunction identifiers must be unique it cannot be equal to any other identifier in
the GAMS or LogMIP section.

Examples:

DISJUNCTION a, b(i,j), disjunctionnamelong, d2(j), D2_d2 ;

a, D2_d2 and disjunctionnamelong are single domain disjunctions.

b(i,j) and d2(j) are disjunctions defined over a do main, i and j are SETS or
ALIAS defined in the GAMS section.

4.2. Definition sentence for single domain disjunct ions

Given the following disjunction, which is a

single domain disjunction with two terms that must satisfy only one
condition (first term:TRUE – second term: FALSE) .

The syntax for the definition is:

disjunction_identifier IS

IF term_condition THEN
 constraint_identifier_1;
 …
 constraint_identifier_i;
 …
 constraint_identifier_n;
ELSE
 constraint_identifier_n+1;
 …
 constraint_identifier_r;
 …
 constraint_identifier_z;
ENDIF;

4CONSTRAINT

Y

3CONSTRAINT

Y








 ¬
∨








LogMIP User’s Manual
16

term_condition is the identifier of a binary variable defined in GAMS section
which takes the role of a Boolean variable, (1:TRUE, 0:FALSE).

Declaration and definition of constraint_identifier_1... constraint_identifier_z
must be performed in GAMS section.

Another example of single domain disjunction can be the following:

Single domain disjunction with two terms. Each term must satisfy a
condition.

The syntax for this case is:

disjunction_identifier IS

IF term_condition_1 THEN
 constraint_identifier_1;
 …
 constraint_identifier_n;
ELSIF term_condition_2 THEN
 constraint_identifier_n+1;
 …
 constraint_identifier_z;
ENDIF;

term_condition_1 and term_comdition_2 are binary variables identifiers
defined in GAMS section which takes the role of a Boolean variable, (1:TRUE,
0:FALSE). The identifiers must be different.

Declaration and definition of constraint_identifier_1... constraint_identifier_z
are performed in GAMS section.

The same syntax can be applied for single domain disjunction with several
terms. Each term must satisfy a condition.

The main difference is that having a disjunction with more than two terms
implies that you must have several ELSIF sections for this case.

For both examples presented the following declarations and definitions apply.

$ONECHO > "%lm.info%"
Disjunction D1, D2;

D1 IS

IF Y THEN
 CONSTRAINT3;

ELSE
 CONSTRAINT4;

ENDIF;

EQUATION2

2CONSTRAINT

Y

EQUATION1

1CONSTRAINT

Y

21

















∨
















LogMIP User’s Manual
17

D2 IS

IF Y1 THEN
 CONSTRAINT1;
 EQUATION1;

ELSIF Y2 THEN
 CONSTRAINT2;
 EQUATION2;

ENDIF;
$OFFECHO

���� It is not allowed in this release the capability of defining a
disjunction with several terms (with each term sati sfying a
condition), and having an ELSE term, which applies when
none of the previous term is TRUE.

 It is not allowed a disjunction defined like:

 IF..THEN..ELSIF..THEN..ELSIF..THEN..ELSE..ENDIF

4.3. Definition sentence for disjunctions defined over a domain

As was mentioned in section 4.1. to define a disjunction over a domain you
must first declare the domain (as a SET or ALIAS in GAMS section) and then
declare the disjunction identifier over that domain.

The simplest definition can be a disjunction defined over the complete domain,
for example, suppose the following disjunction:

In order to define it you must have in the GAMS section :

Declaration of the domain:
SET I /1*3/
 J /1*4/;

Declaration of the constraints:
EQUATION
 CONSTRAINT1(I,J), CONSTRAINT2(I,J), EQUATION1(I,J), EQUATION2(I,J)
 DUMMY;

Declaration of variables for disjunction terms:
BINARY VARIABLES Y(I,J);

Definition of constraints:
CONSTRAINT1(I,J).. define constraint1 here;
CONSTRAINT2(I,J).. define constraint2 here;
EQUATION1(I,J).. define equation1 here;
EQUATION2(I,J).. define equation2 here;

EQUATION2

2CONSTRAINT

Y

EQUATION1

1CONSTRAINT

Y

ij

ij

ij

ij

ij

ij

















 ¬

∨



















LogMIP User’s Manual
18

 Dummy equation if needed:
 DUMMY.. SUM(I, SUM(J, Y(I,J))) =G= 0;

 In the LogMIP section you must have :

$ONECHO > "%lm.info%"
Disjunction D(I,J);

D(I,J) IS

IF Y(I,J) THEN
 CONSTRAINT1(I,J) ;
 EQUATION1(I,J) ;

ELSE
 CONSTRAINT2(I,J) ;
 EQUATION2(I,J) ;

ENDIF;

$OFFECHO

The previous define a total of 12 (3 times 4) disjunctions with two terms
according to all possible combination of I times J.

Another illustrative example could be:

In order to define it you must have in the GAMS section :

Declaration of domains:
SET I /1*3/
 J /1*4/;
ALIAS(J,K);

Declaration of constraints:
EQUATION
 CONSTRAINT(I,J,K), DUMMY;

Declaration of variables for the condition of disju nction terms:
BINARY VARIABLES Y(I,J);

Definition of constraints:
CONSTRAINT1(I,J,K).. define constraint here;

 Dummy equation if needed:
 DUMMY.. SUM(I, SUM(J, Y(I,J))) =G= 0;

 In the LogMIP section you must have :

CONSTRAINT

CONSTRAINT

Y

CONSTRAINT

CONSTRAINT

Y

ij4

3ij

ij

ij2

1ij

ij

















 ¬

∨



















LogMIP User’s Manual
19

$ ONECHO > "%lm.info%"
Disjunction D(I,J);
D(I,J) IS

IF Y(I,J) THEN
 CONSTRAINT(I,J,’1’) ;
 CONSTRAINT(I,J,’2’) ;

ELSE
 CONSTRAINT(I,J,’3’) ;
 CONSTRAINT(I,J,’4’) ;

ENDIF;

$OFFECHO
In the same way than the previous example, with the sentences above a total of
12 (3 times 4) disjunctions with two terms are defined according to all possible
combinations of I times J.

���� You must be aware that when constraint’s domains ar e
expanded together the disjunction’s domains, constr aints
must be previously defined in GAMS section. If the
constraints are not defined over a particular domai n, LogMIP
reports an error.

4.4. Controlling the disjunction’s domain

The constraint and disjunction’s domain can be controlled by the sentence with
in conjunction with other operators:

� Relational operators:
 lt, < : less than
 le, <= : less than or equal to
 eq, = : equal
 gt, > : greater than
 ge, <=: greater than or equal to

� Logic operators: and, or.

� Sets operators:

 ord : order of an item in the set
 card : number of items in the set
 in : inclusion of a set item

� Using subsets.

 If you have defined a disjunction over a domain and you have also the
disjunction’s variables and constraints defined over the same or different
domain, you can have two situations, which are:

� Constraints and variables whose domain is under the control of the
disjunction domain.

� Constraints and variables with uncontrolled domains, which must be
defined in order to avoid semantic errors.
If you need to control a set domain that is already controlled by the

disjunction definition, you must use an ALIAS for that set and redefine the
domain over that ALIAS. See example 3 for this purpose.

In the following four sections some illustrative examples are presented
with the intention of clarifying these matters.

LogMIP User’s Manual
20

4.4.1. Example 1

In this example, the disjunction domains are controlled using the with, ord and
card clauses. The disjunction’s variables and constraints domains do not need
an extra control.

Given the following set definition in the GAMS Section:

SET I /1*3/ , J /1*4/;

and the following disjunction declaration and definition in LogMIP Section:

$ ONECHO > "%lm.info%"
Disjunction D(I,J);

D(I, J) with (ord (J) lt card (J)) IS

IF Y(I,J) THEN
 CONSTRAINT(I,J) ;
 CONSTRAINT(I,J) ;

ELSE
 CONSTRAINT(I,J) ;
 CONSTRAINT(I,J) ;

ENDIF;
$OFFECHO

Only the domain of set J is controlled. The values of J must be less than the
cardinality of J, meaning that only 1, 2 and 3 are permitted. The expansion of
the previous definition renders 9 disjunctions (3 times 3): D(‘1’,’1’), D(‘1’,’2’),
D(‘1’,’3’), D(‘2’,’1’), D(‘2’,’2’), D(‘2’,’3’), D(‘3’,’1’), D(‘3’,’2’) and D(‘3’,’3’).

���� Please note that although GAMS allows declaring var iables and
equations without a domain, and then in the definit ion use them
with domains, LogMIP compiler is not aware about th is situation
and gives you an error or get stacked. We strongly suggest to
explicitly declare all domains for every variable a nd constraint
defined in the model.

4.4.2. Example 2
In this example, the disjunction domains are controlled using the with and ord
clauses. There exists a constraint with a domain not controlled by the
disjunction that must be done in order to avoid semantic errors.

Given the following set definition in the GAMS Section:

SET I /1*3/ , J /1*4/, K/1*2/;

and the following disjunction declaration and definition in LogMIP Section:

LogMIP User’s Manual
21

$ ONECHO > "%lm.info%"
Disjunction D(i,j);

D(i,j) with (ord (i) < ord (j)) IS
 IF Y(i,j) THEN
 CONSTR1(j);
 CONSTR2(i,j) ;
 ELSE
 CONSTR3(j);
 CONSTR4(j,k) with (ord(k) ge 1);
 ENDIF;

$OFFECHO

The previous example will generate the following disjunctions:

D('1', '2'), D('1', '3'), D('1','4'), D('2', '3'), D('2', '4') y D('3', '4').

���� Observe that CONSTR4 is defined over sets j and k. In this case j
does not have problems since its domain is controll ed by
disjunction D. This is not the case of k, where you must include a
with sentence to control the domain and avoid a semanti c error.

For the second term of the first disjunction D(‘1’, ‘2’) the following constraints
must be satisfied: CONSTR3(‘2’), CONSTR4(‘2’,’1’), CONSTR4(‘2’,’2’),
CONSTR4(‘2’, ’3’).

4.4.3. Example 3

This example is a modification of the previous, for this case we need to control
a domain set which is already controlled. An ALIAS definition in the GAMS
section is needed.

Given the following definition in the GAMS Section

SET I /1*3/ , J /1*4/;
ALIAS (J,JJ)
and the following disjunction declaration and definition in LogMIP Section:

$ ONECHO > "%lm.info%"
Disjunction D(i,j);

D(i,j) with (ord (i) < ord (j)) IS
 IF Y(i,j) THEN
 CONSTR1(j);
 CONSTR2(i,jj) with (ord (jj) le 2);
 ELSE
 CONSTR3(j);
 CONSTR4(j,k) with (ord(k) lt card(k));
 ENDIF;

$OFFECHO

LogMIP User’s Manual
22

Since the domain j is controlled by the disjunction, and for CONSTR2 you need
a different control, the ALIAS definition allow that you can define a with clause
over it.
The previous example will generate the following disjunctions:

D('1', '2'), D('1', '3'), D('1','4'), D('2', '3'), D('2', '4') y D('3', '4').

Note that:

� for the first term of disjunction D(‘1’,’2’) the following constraints must be
satisfied: CONSTR1(‘2’), CONSTR2(‘1’, ‘1’) and CONSTR2(‘1’, ‘2’).

� for the first term of disjunction D(‘2’, ‘3’) the following constraints must be
satisfied: CONSTRAINT1(‘3’), CONSTRAINT2(‘2’, ‘1’), CONSTRAINT2(‘2’,
‘2’).

� and so on...

���� If you control the domain of a particular constrain t with the
sentence with you must be aware which domain expansion is
assumed in order to avoid errors on it

Observe that in the previous example it has been compared the order of
a set item against an integer number, because the order is related to a position
into the set, the position in which the item has been defined in the set.

4.4.4. Example 4 – Using a subset and the GAMS GDX facilities
Sometimes it is useful to restrict the disjunction domain by using a

subset of the original set’s domain. This can be done using the definition of a
subset and the GDX facilities in the GAMS Section. This possibility is available
for GAMS versions 20.5 and up. There exist two versions of this implementation
depending on the GAMS version that is running in the system.

This method for controlling the set domain has the advantage of being
the most general way of doing it, because you explicitly define the domain
applicable for the disjunction.

Suppose the example 1 of section 4.4.1 that must be defined over the

following domain of I,J: (‘1’,’2’) , (‘2’,’3’) , (‘3’,’4’) , to specify this you must define
in the GAMS section the following:

SET I /1*3/ , J /1*4/;
*
* Define the subset k
*
SET K(I,J) / 1.2, 2.3, 3.4 /;

and the following disjunction declaration and definition in LogMIP Section:

LogMIP User’s Manual
23

$ ONECHO > "%lm.info%"
Disjunction D(I,J);

D(I, J) with K(I,J) IS

IF Y(I,J) THEN
 CONSTRAINT(I,J) ;
 CONSTRAINT(I,J) ;

ELSE
 CONSTRAINT(I,J) ;
 CONSTRAINT(I,J) ;

ENDIF;
$OFFECHO

 Note the sentence using the clause with in the definition of D(I,J) it is
referencing the subset to define disjunctions D(‘1’,’2’), D(‘2’,’3’) and D(‘3’,‘4’).

 If you are using GAMS IDE versions 20.5, 20.6, 20.7, 21.0, and 21.1 you
must do the following:

1. Include in GAMS INPUT file the following sentences:

$ GDXOUT filename
$ UNLOAD

2. In the IDE GAMS parameters box (in the upper right section of the
IDE window) write the following:

gdx= filename

The first two sentences generate in GAMS compilation time a
filename.gdx file containing the symbols of the subsets needed by
LogMIP to proceed with the compilation. The sentence included in the
IDE GAMS parameters box tells LogMIP the filename and file location in
order to open it and read those symbols.

Both filenames must be the same.

For versions 21.2 and up the previous items 1. and 2. are not needed.

 A larger example

The following example corresponds to a jobshop scheduling problem
(Raman and Grossmann, 1994). In this problem, there is a set of jobs i∈I that
must be processed in a sequence of stages but not all jobs require all stages.
Zero wait transfer policy is assumed between stages. To obtain a feasible
solution is necessary to eliminate all clashes between jobs. It requires that no
two jobs be performed at any stage at the same time. This is expressed by the
following disjunction:

















∑+≤∑+

<
∈

≤
∈

 t t

Y

jm
)k(J m
kmk

jm
)i(J m
imi

ik

ττ
















∑+≤∑+
¬

∨

<
∈

≤
∈

 t t

Y

jm
)k(J m
imi

jm
)k(J m
kmk

ik

ττ

where ti is the starting time of job i and τij the processing time of job i in stage j.
The meaning of (1) is that either the job i precede job k or viceversa in the stage
j where a clash can occur. The objective is to minimize the makespan.

LogMIP User’s Manual
24

The subset is used to prevent clashes at stage j between job i and k. In the
following we include GAMS file for a jobshop scheduling problem to illustrate
how to use a subset to control the disjunction domain.

The LogMIP input file corresponding to this example is the following:

SETS I jobs / A, B, C, D, E, F, G / ;
ALIAS(I,K);
SET J stages / 1*5 /;
ALIAS(J,M);
*
* Subset L to prevent clashes at stage j between stage i and k
*
SET L(I,K,J) /A.B.3, A.B.5, A.C.1, A.D.3, A.E.3, A.E.5, A.F.1, A.F.3,

A.G.5, B.C.2, B.D.2, B.D.3, B.E.2, B.E.3, B.E.5, B.F.3, B.G.2,
B.G.5, C.D.2, C.D.4, C.E.2, C.F.1, C.F.4, C.G.2, C.G.4, D.E.2,
D.E.3, D.F.3, D.F.4, D.G.2, D.G.4, E.F.3, E.G.2, E.G.5,

 F.G.4 / ;

TABLE TAU(I,J) processing time of job i in stage j

 1 2 3 4 5
 A 3 5 2
 B 3 4 3
 C 6 3 6
 D 8 5 1
 E 4 6 2
 F 2 5 7
 G 8 5 4 ;

VARIABLES MS makespan ;
BINARY VARIABLES Y(I,K,J) sequencing variable between jobs i and k ;
POSITIVE VARIABLES T(I) ;

EQUATIONS
 FEAS(I) makespan greater than all processing times
 NOCLASH1(I,K,J) when i precedes k
 NOCLASH2(I,K,J) when k precedes i
 DUMMY ;

FEAS(I).. MS =G= T(I) + SUM(M,TAU(I,M)) ;

NOCLASH1(I,K,J)$((ORD(I) LT ORD(K)) AND L(I,K,J)) ..
 T(I) + SUM(M$(ORD(M) LE ORD(J)), TAU(I,M)) =L=
 T(K) + SUM(M$(ORD(M) LT ORD(J)), TAU(K,M));

NOCLASH2(I,K,J)$((ORD(I) LT ORD(K)) AND L(I,K,J)) ..
 T(K) + SUM(M$(ORD(M) LE ORD(J)),TAU(K,M)) =L=
 T(I) + SUM(M$(ORD(M) LT ORD(J)), TAU(I,M));

DUMMY.. SUM(I, SUM(K,SUM(J, Y(I,K,J)))) =G= 0;

MODEL JOBSHOP / ALL / ;

LogMIP User’s Manual
25

$ ONECHO > "%lm.info%"

DISJUNCTION D1(I,K,J);

D1(I,K,J) with ((ord(I) lt ord(K)) and L(I,K,J)) IS
IF Y(I,K,J) THEN

 NOCLASH1(I,K,J);
ELSE

 NOCLASH2(I,K,J);
ENDIF;

$OFFECHO
T.up(I)=100.;

OPTION MIP = LMBIGM;
OPTION OPTCR = 0.0 ;
OPTION OPTCA = 0.0 ;

SOLVE JOBSHOP MINIMIZING MS USING MIP ;

In the example shown above note that in LogMIP section disjunction D1 is
defined over sets I,K,J their domain is controlled by the clause WITH using ord
and card operators and the subset L, this is done in the same way than the
definition of NOCLASH1 and NOCLASH2 constraints in GAMS section.

4. 5. Using the operator IN

Using the operator IN as follows can perform the same constraints domain
limitation for the Example 3:

$ ONECHO > "%lm.info%"

Disjunction D(i,j);

D(i,j) with (ord (i) < ord (j)) IS
 IF Y(i,j) THEN
 CONSTR1(j);
 CONSTR2(i,j);
 ELSE
 CONSTR3(j);
 CONSTR4(j,k) with k IN (‘1’, ‘2’);
 ENDIF;

$OFFECHO

���� The operator IN expands the domain just for the set items included between
the parentheses after the operator. The set items must be enclosed by single
quotation marks and separated by commas.

Another example of the IN operator is when you define the domain over a value
range as follows:

LogMIP User’s Manual
26

$ ONECHO > "%lm.info%"

Disjunction D(i,j);

D(i,j) with (ord (i) < ord (j)) IS
 IF Y(i,j) THEN
 CONSTR1(j);
 CONSTR2(i,j);
 ELSE
 CONSTR3(j);
 CONSTR4(j,k) with k IN (‘1’..‘2’);
 ENDIF;

$OFFECHO

���� The above examples are just a few samples of what y ou can do for
limiting the disjunction’s domain. You can define m ore difficult
sentences by using the operators mentioned and the logical
operators and/or.

Some other examples could be:

with (ord (j) lt card (i) and ord (k) not 1)

with (ord (I) lt ord (K)) and ((ord (I) eq 1 and ord (K) eq 3 and ord (j) eq 1) or

 (ord (I) eq 1 and ord (K) eq 4 and ord (j) eq 4))

4.6. Use of a DUMMY equation
Although it is not mandatory, we recommend the user to write a dummy equation
into the GAMS section for the binary variables that handle disjunction terms
(disjunction conditions) in order to avoid that GAMS compiler eliminate those
variables from the model (and from the matrix). It occurs when some or all
variables are not used in other equations/constraints of the model. Suppose the
following variables handling disjunction’s terms defined in GAMS section:

Binary variables Y(J);

If some or all variables of Y are not included in any equation or constraint defined
in GAMS section they will be eliminated from the model, and LogMIP compiler
will show an error even when they handle disjunction terms. To avoid that, you
must write the following constraint:

DUMMY.. SUM(J, Y(J)) =G= 0;

which should be always satisfied. Another example could be:

 Binary variables y, w, z;

 DUMMY .. y + w + z =G=0;

LogMIP User’s Manual
27

 A combination of the previous examples could be:

 DUMMY.. y + w + z + SUM(j, Y(j)) =G= 0;

5. Logic Propositions
Logic propositions are used to pose relationships between the Boolean (Binary)
variables handling the disjunctive terms.

The operators defined for writing these sentences are:

Symbol Meaning
-> Implication
<-> equivalence
not negation
and logical and
or logical or

Every logic proposition must have an implication or equivalence operator,
otherwise a syntax error will occur.

LogMIP transforms the logical propositions into a set of mathematical integer
inequalities. Given the following set of logic propositions in LogMIP Section:
Y('1') and not Y('2') -> not Y('3');
Y('2') -> not Y('3') ;
Y('1') -> Y('3') or Y('4') or Y('5');
Y('2') -> Y('3') or Y('4') or Y('5');
Y('3') -> Y('8');
Y('3') -> Y('1') or Y('2');
Y('5') <-> Y('8');

They are transformed into the following set of inequalities written in GAMS
language syntax:
LOGPROP1.. -Y(1) +Y(2) -Y(3) =G= -1;
LOGPROP2.. -Y(2) -Y(3) =G= -1;
LOGPROP3.. -Y(1) +Y(3) +Y(4) +Y(5) =G= 0;
LOGPROP4.. -Y(2) +Y(3) +Y(4) +Y(5) =G= 0;
LOGPROP5.. -Y(3) +Y(8) =G= 0;
LOGPROP6.. -Y(3) +Y(1) +Y(2) =G= 0;
LOGPROP7.. -Y(5) +Y(8) =G= 0;
LOGPROP8.. -Y(8) +Y(5) =G= 0;

Then the disjunctive problem including this mathematical inequalities set is
solved.

The user can avoid the writing of logic propositions into LogMIP section by
introducing directly the mathematical equivalent inequalities in the GAMS
Section, it depends on how confident it is with one methodology or the other.

6. Special Sentences
The special sentences are sentences to establish single relationships between
the Boolean (binary variables) handling the disjunction terms. They represent
an easy and more natural way than logic propositions to express the most
common relationships between the Boolean/binary variables.

LogMIP User’s Manual
28

There are three kind of special sentences:
� atmost
� atleast
� exactly

The syntax of these sentences are:

atmost (Boolean/binary variable list separated by comma, [number])
atleast (Boolean/binary variable list separated by comma, [number])
exactly (Boolean/binary variable list separated by comma, [number])

� The meaning of atmost is that the summation of the variable list

must be less than or equal to number.
� The meaning of atleast is that the summation of the variable list

must be greater than or equal to number.
� The meaning of exactly is that the summation of the variable list

must be equal to number.
[number] is optional, if no number is specified 1 is assumed.

The Boolean/binary variable list can include single variables and also a variable
defined over a domain.

Example:
Given the following set of special sentences in LOGMIP section
atmost(Y('1'), Y('2'), Y('3'),2);
atleast(Y('1'), Y('2'), Y('3'), 3);
exactly(Y('1'), Y('2'), Y('3'));

They are transformed into the following set of mathematical inequalities:
LOGPROP1.. +Y(1) +Y(2) +Y(3) =L= 2;
LOGPROP2.. +Y(1) +Y(2) +Y(3) =G= 3;
LOGPROP3.. +Y(1) +Y(2) +Y(3) =E= 1;

7. LogMIP compilation errors

���� The syntax, semantic and some other errors detected during the
disjunction’s compilation phase are shown in the ex ecution
window of the IDE. They are not included in the lis ting file (.lst file).

8. SOLVERS

���� LogMIP can solve linear/nonlinear disjunctive hybri d models that
follow the formulation showed in section 2 of this manual.
Disjunctive models are those where discrete decisio ns are written
only in the form of disjunctions, while hybrid mode ls involve both
disjunctions and mixed-integer constraints.

LogMIP User’s Manual
29

8.1. Linear Solvers.
 In figure 1 it is shown the solution algorithms for linear hybrid/disjunctive
models.

Fig. 1: solution algorithms for linear models

The disjunctions defined in the model are transformed into mixed integer
formulations by using one of the relaxations proposed: BigM or convex hull. The
original model is transformed into a Mixed Integer Model that it is later solved by
a Branch and Bound algorithm. References about the relaxations can be found
in Balas(1979), Vecchietti and Grossmann(2002).

Two solvers are available for linear solvers, which are:

� LMBIGM : applies the BigM relaxation of a disjunctive set.
� LMCHULL : applies the convex hull relaxation of a disjunctive set.

To select one solver you must write in the GAMS input file one of the following
sentence:

OPTION MIP=LMBIGM;

or

OPTION MIP=LMCHULL;

See the small examples provided in Section 2 of thi s manual.

8.1.1. OPTIONS in LMBIGM solver

You have two options when selecting the BigM relaxation solver (LMBIGM).
Both options are related to value of the parameter M in the relaxations. This
value is very important in order to reach the solution. The parameters are set up
by the keywords DEFAULT and DETERMINEM in the file “LMBIGM.opt”.

Reformulated as MIP by
BigM

or convex hull
Relaxations

HYBRID/DISJUNCTIVE
LINEAR PROGRAM

MIP

B&B
(OSL, CPLEX, XA)

LogMIP User’s Manual
30

The way LMBIGM uses this parameters is same than the other solvers in
GAMS:

� In GAMS section and after defined the model you want to solve, you must

write:
model_name.optfile =1;

� In the directory where GAMS files are included, write a file whose name is
LMBIGM.opt with the options you have selected.

� In LMBIGM.opt you must write the options according to the following rules:
DEFAULT is the default value for the M parameter value. After the keyword
DEFAULT you must write a real number representing the value of M of your
choice. Examples: DEFAULT 1000 , DEFAULT 5.e5. DETERMINEM is the
option that can be turned off or turned on by writing 0 or 1 respectively, after
the keyword DETERMINEM. If you turned it on, then the solver can
calculate the best value of M. For doing that it is very important to
provide good bounds for all continuous variables included in the model.
Example: DETERMINEM 0.

The default values for this option are DEFAULT 1.E4 and DETERMINEM 0.

8.2. Nonlinear SOLVER

In figure 2 it is shown the solution algorithms for nonlinear hybrid/disjunctive
models.

Fig. 2: solution algorithms for nonlinear models

From nonlinear hybrid/disjunctive models you have three paths to arrive to the
solution the first one is for models that have special two terms disjunctions that
have the following formulation:

















====
====

¬¬¬¬

∨∨∨∨
















====
≤≤≤≤

 0 c

0 xB

Y

 c

0 (x)h

Y

i

i

i

ii

i

i

γγγγ
 i∈∈∈∈ D

For special
two terms

disjunctions

Reformulated as MINLP
by BIG-M

or Convex Hull

Convex
Hull

 HYBRID/DISJUNCTIVE
NON-LINEAR PROGRAM

MINLP

LOGIC BASED
 OA

Convex -Hull
 B&B

 B&B

 OA

 ECP

 GBD

LogMIP User’s Manual
31

This special disjunction involves two terms handled by one variable, the first term
apply when the Yi is true; while the second when it is false. In the second term a
subset of variables must set to zero.

The LOGIC BASED OA algorithm (Turkay and Grossmann, 1996a) was mainly
generated to solve the synthesis of chemical processes. It was applied to
examples other than these types of problems. This is the only solution method
working in this release of LOGMIP . The solver name is LMLBOA.

The other two paths are not implemented yet.

To select the LOGIC BASED OA algorithm you must write in the GAMS input file
the following sentence:

OPTION MINLP=LMLBOA;

Observe that since this corresponds to a nonlinear model you must select
the option for MINLP models. See the nonlinear exam ple provided in
section 2 of this manual.

8.2.1. INITIALIZATIONS

For some nonlinear models in order to solve a particular problem the user
should provide initializations. The meaning of the initializations is to fix the
disjunctions terms that are true or false. The algorithm runs as many NLP
subproblems as initializations is provided. By running these subproblems it is
possible to generate the first MASTER MIP. More details about this initialization
step can be found in Turkay and Grossmann (1996a).

There is a special LogMIP language construction for this purpose. The
initialization entries must be provided in LogMIP section. The keyword INIT is
used. After that you must provide the list of disjunctions terms that are TRUE or
FALSE by adding those words, and the list of variables that handle those terms,
separated by commas and ended by a semicolon. Each INIT entry corresponds
to an initialization set (a new NLP subproblem). In the Nonlinear example
showed in section 2, this initialization is provided:

INIT TRUE Y('1'), Y('3'), Y('4'), Y('7'), Y ('8');

 INIT TRUE Y('1'), Y('3'), Y('5'), Y('8');
INIT TRUE Y('2'), Y('3'), Y('4'), Y('6'), Y ('8');

The first initialization set specifies that the first term of disjunction 1, 3, 4, 7 and
8 must be true, the second 1, 3, 5, y 8 and the third 2, 3, 4, 6 y 8. The algorithm
executes three Non Linear Program problems by considering in the model the
constraints of the disjunction terms that are TRUE. The resulting problem must
be feasible, so the correct initialization sets must be provided.

The initialization entries must be written after th e disjunction definitions.

The same specification can be done by the following sentences:

INIT FALSE Y('2'), Y('5'), Y('6');
INIT FALSE Y('2'), Y('4'), Y('6'), Y('7');
INIT FALSE Y('1'), Y('5'), Y('7');

LogMIP User’s Manual
32

Instead of initializing by the TRUE terms, we can initialize by those that are
FALSE. We can have also a combination of both initializations previously
presented:

INIT TRUE Y('1'), Y('3'), Y('4'), Y('7'), Y(' 8');
INIT TRUE Y('2'), Y('3'), Y('4'), Y('6'), Y(' 8');
INIT FALSE Y('2'), Y('4'), Y('6'), Y('7');

The order of the sentences is not important.
If you want to specify all disjunctions terms you can use the word ALL. For
example:
INIT TRUE ALL;
or
INIT FALSE ALL;

8.2.2 TERMINATION OPTIONS
Since the OA Logic-Based algorithm is similar to the OA MINLP algorithm
based on dividing the original problem into two subproblems: the NLP
subproblem and the master MILP subproblem, and according to this, two
termination options for the algorithm exist for the LogMIP non-linear solver.
These options are similar to those implemented in DICOPT++ (MINLP GAMS
solver).

1. STOP on CROSSOVER
2. STOP on NLP worsening

Option 1 is appropriated for convex models. The meaning of this option is that
the objective function obtained in the Master MILP subproblem is lower/upper
the solution obtained in the NLP subproblem depending if the optimization
direction is maximize/minimize the objective function.
Option 2 is recommended for non-convex model, and the algorithm stops after
the objective function obtained in the solution of consecutive NLP subproblems
starts to deteriorate.
The default is option 1.
These options are implemented in the same way than DICOPT++, you must
specify at the option file (LMLBOA.opt) STOP 1 or STOP 2 depending on the
choice selected.

9. Recommendations and Limitations.
� Write the GAMS file in a single way following a sequence: declare SETS,

VARIABLES and EQUATIONS at the beginning of the file, then start with the
constraint and objective function definitions. Finally write the options, model and
solution sentences.

� Although GAMS is flexible about the declarations of the equation and variable

domains (you can declare them or not), it is strongly recommended to explicitly
declare all domains for every variable and constraint defined in the model.
LogMIP compiler can not deal with variables and constraint not declared over a
domain and then defined with a domain.

� Write your entire model in a single file, do not use the include directive to import

an external file in the model.

� Note that constraints defined in the disjunctions are related with your declaration
and definitions in the GAMS section. In this sense you cannot include in the
disjunction the name of a constraint not previously defined. This is especially

LogMIP User’s Manual
33

important for constraints defined in the GAMS section over a domain controlled
by the dollar sign ($).

� A similar advice is necessary for variables handling disjunction terms. Do not

forget to include the dummy equation for them.

10. References.
The following is a list of articles where you can get a more complete material
about disjunctive/hybrid models and the algorithms to solve them.

Balas, E.
“Disjunctive programming”. Discrete Optimizations II, Annals of Discrete
Mathematics, 5, North Holland, Amsterdam, 1979.

Balas, E.
“Disjunctive Programming and a hierarchy of relaxations for discrete optimization
problems”, SIAM J. Alg. Dis. Meth., 6 (3), 466-485, 1985.

Balas, E.
“Disjunctive Programming: Properties of the convex hull of feasible points”,
Discrete Applied Mathematics 89 (1), 3-44, 1998.

Brooke A., Kendrick D. and Meeraus A.
“GAMS a User’s Guide”. Gams Development Corporation, 1996.

Gil J.J. and Vecchietti A.
"Issues about the development of a disjunctive program solver". Proceedings of
Enpromer , I ,403-409, 2000.

Gil J.J. and Vecchietti A.
“Using design patterns for a compiler modeling for posing disjunctive optimization
programs”. Proceedings of 31 JAIIO, September 2002, Santa Fe Argentina.

Grossmann I.E.
 “Mixed-Integer Optimization Techniques for Algorithmic Process Synthesis”,
Advances in Chemical Engineering, Vol. 23, Process Synthesis, pp.171-246, 1996.

Lee S. and Grossmann I.E.
“New algorithm for Nonlinear Generalized Disjunctive Programming”.Comp.
Chem. Eng. , 24 (9-10), 2125-2141, 2000.

Lee, S. and I.E. Grossmann,
"Logic-based Modeling and Solution of NonlinearDiscrete/Continuous
Optimization Problems," Annals of Operations Research: State of the Art and
Recent Advances in IntegerProgramming, 139, 267-288, 2005.

Raman R. and Grossmann I.E.
“Modeling and Computational Techniques for Logic Based Integer Programming”.
Comp. Chem. Eng., 18 (7), 563-578, 1994.

Sawaya, N.W. and Grossmann I.E.
 “A Cutting Plane Method for Solving Linear Generalized Disjunctive Programming
Problems,” Computers and Chemical Engineering, 29, 1891-1913, 2005.

LogMIP User’s Manual
34

Sawaya, N.W. and Grossmann I.E.
 “Computational Implementation of Non-Linear Convex Hull Reformulation,”
Computers & Chemical Engineering, 31, 856-866, 2007.

Turkay M. and Grossmann I.E.
“Logic-Based Algorithms for the Optimal Synthesis of Process Networks”. Comp.
Chem. Eng., 20 (8), 959-978, 1996.

Vecchietti A. and Grossmann I.E.
“ LOGMIP: A Disjunctive 0-1 Nonlinear Optimizer for Process System Models”.
Comp. Chem. Eng., 23,. 555-565, 1999.

Vecchietti A. and Grossmann I.E.
"Modeling issues and implementation of language for disjunctive programming".
Comp. & Chem. Eng, 24, 2143-2155, 2000.

Vecchietti, A., S. Lee and I.E. Grossmann
“Modeling of Discrete/ContinuousOptimization Problems: Characterization and
Formulation of Disjunctions and their Relaxations,” Computers and Chemical
Engineering 27, 433-448 2003.

Vecchietti A, and Grossman I.E.,
"Computational Experience with LogMIP Solving Linear and Nonlinear Disjunctive
Programming Problems," Proceedings of the Sixth International Conference on
Foundation of Computer Aided Process Design (FOCAPD 2004), p. 587-590
2004.

