

 1

MODELING ISSUES AND IMPLEMENTATION OF
LANGUAGE FOR DISJUNCTIVE PROGRAMM ING

Aldo Vecchiett i(+) and Ignacio E. Grossmann(*)

(+)INGAR – Instituto de Desarrollo y Diseño

UTN – Facultad Regional Santa Fe

 e-mail: aldovec@alpha.arcr ide.edu.ar
(*)Department of Chemical Engineering, Carnegie Mellon University,

Pittsburgh, PA 15213 - USA

e-mail: grossmann@cmu.edu

Keywords: Generalized Disjunctive Programming (GDP), Mixed-Integer Nonlinear
Programming, Constraint Logic Programming, Modeling Language

Abstract

This paper describes a number of key modeling issues for the development of tools for

solving nonlinear discrete/continuous problems where logic/disjunctive constraints are included

in the formulation. A generalized hybrid representation of these problems is presented. A

comparison between Constraint Logic Programming (CLP) and Generalized Disjunctive

Programming (GDP) is established together with several constraint transformations from CLP to

GDP. The components and expressions of a modeling language for setting up disjunctions and

logic constraints are proposed. The language allows the specification of problems with complex

logic formulations. A parser is developed for the analysis and translation of the logic sentences

into files ready to be used by the solvers. An overview of the solution algorithms is also given

together with several aspects about the implementation as a superset of GAMS mathematical

programming language. Examples illustrating the capabilities of the proposed system are

described.

 2

1. Introduction

In recent years there have been several efforts for incorporating logic in mathematical and

optimization programming. The logic is introduced at the level of problem formulation, and at the

level of solution techniques. Disjunctive Programming (Raman and Grossmann, 1994; Turkay

and Grossmann 1996, Bjorkqvist and Westerlund, 1999) and Constraint Logic Programming

(Hajian et al. 1995; Darby-Dowman et al, 1997) are examples of these efforts. A disjunctive

program can be regarded as a mixed integer program involving disjunctive constraints. Constraint

Logic Programming combines a powerful language to express combinatorial problems with

constraint propagation techniques within an implicit enumeration search. Compared to Mixed-

Integer Nonlinear Program (MINLP), both approaches offer significantly improved techniques

for modeling, and in many cases more effective solutions in the areas of design, synthesis,

planning and scheduling of process engineering problems. The introduction of disjunctions and

logic into the formulation is in many cases a more direct way of stating the problem. Although,

new models, algorithms and solvers have been proposed, challenges remain at the level of

modeling, language expressiveness, solution techniques and general tools for solving logic-based

problems. In particular, when adaptations of languages conceived for mathematical programming

or complex declarations are used for expressing a model with disjunctions or logic constraints,

this can lead to ambiguous problem statements or models that are diff icult to read or understand.

It is the purpose of this paper to propose a number of ideas and concepts for disjunctive

programming regarding the modeling, language syntax and its implementation in a computer

code. The motivation is to develop general tools that can address nonlinear/discrete optimization

problems with logic in the formulation. For the problem representation we start from a general

hybrid formulation including disjunctions, Boolean and 0-1 variables for the discrete choices.

Logic propositions are included in the problem formulation for stating relations between the

Boolean variables. These propositions involve the logic operators “and”, “or” , “not” and

“ implication” . The relationship between the disjunctive representation and models from

constraint logic programming is then presented with the transformation of logic constraints and

embedded disjunctions in the form of general disjunctions. Next, the basic elements of a language

to express a general hybrid disjunctive model are proposed, as well as the connection between the

models and the algorithms available to solve them. Finally, results obtained in the solution of

several examples are presented.

 3

2. Generalized Hybrid representation

The model presented below corresponds to a generalized hybrid formulation for a

continuous discrete nonlinear program problem where the discrete choices are represented by

disjunctions, Boolean variables and binary variables (Vecchietti and Grossmann, 1999):

min Z = Σk ck + f(x) + dTy

 st
g(x) ≤ 0

 r(x) + Dy ≤ 0

 Ay ≥ a (PH)

 SD k

 c

 0 (x)h

Y

ikk

ik

ik

D i k

∈
















=
≤∨

∈
γ

Ω(Y) = True

x ∈ Rn , y ∈ {0,1}q , Yik ∈ {True, False}m, ck ≥ 0

In problem (PH) x and ck are continuous variables, y are binary variables (0-1), Yik are

Boolean variables to establish whether a given term in a disjunction is true [hik(x)≤0], Ω(Y) are

logical relations between Boolean variables, f(x) represents a linear/nonlinear objective function,

g(x) are linear/nonlinear inequalities that hold independent of the discrete choices, r(x)+Dy≤0

corresponds to general mixed integer algebraic equations, Ay≥a is a set of integer inequalities, dTy

are fixed cost terms.

 When constraints involving binary variables are not present in (PH), this problem reduces

to the Generalized Disjunctive Program formulation by Raman and Grossmann (1994):

 4

min Z = Σk ck + f(x)
 st

g(x) ≤ 0

 SD k

 c

 0 (x)h

Y

ikk

ik

ik

D i k

∈
















=
≤∨

∈
γ

 (GDP)

Ω(Y) = True

 x ∈ Rn , Yik ∈ {True, False}m, ck ≥ 0

 From (PH) it is also possible to obtain a Mixed Integer Non-Linear Programming problem

(MINLP) if disjunctions and Boolean variables are not included in the problem formulation:

 min Z = f(x) + dTy
 st

g(x) ≤ 0
 (PA)
 r(x) + Dy ≤ 0

 Ay ≥ a

 In this way problem (PH) provides the flexibility of modeling a problem as a GDP,

MINLP or a hybrid model.

 The propositional logic in (PH) is expressed through the conjunction of q different

propositions,

Λ= { L1 ∧ L2 ∧ ... ∧ Lq }

 where Li is a logical proposition expressed in terms of ∧ (and), ∨ (or), ¬(negation, not), ⇒

(implication) and ⇔ (equivalence) operators.

 The set of clauses Λ can be transformed into the Conjunctive Normal Form (CNF)

(Clocksin and Mellish, 1981) which is expressed as follows:





 ∨∨∧∧



 ∨∨∧



 ∨∨=Ω

∈∈∈∈∈∈
i

sPi
i

Psi
i

2Pi
i

P2i
i

1Pi
i

P1i
YY..... YY YY

 5

where Pi and iP are subsets of the Boolean variables that correspond to a subset of 0-1 variables

and s is the number of disjunctive clauses. The CNF form implies that every clause in Ω must be

satisfied. Although in previous work the propositional logic was mostly implemented in problems

of process synthesis to reflect the structural relationship between the units (Raman and

Grossmann, 1993), it can be applied to any type of problem where it is needed. The CNF set Ω

can be transformed automatically into an equivalent set of integer inequalities (Tourn, 1995). It

should be noted that for the special case where we have the following multiple choice constraint

(at most one item),

1 Y
i

 i ≤∑ (1)

it is cumbersome to use propositional logic to represent it. However, using a slack Boolean

variable z with a “exclusive or” for all the Boolean variables Y i, yields a simple transformation:

Y1 ∨ Y2 ∨ ... ∨ Ys ∨ z ⇒ 1 z Y
i

 i =+∑ (2)

In this way if z is true (z=1) all Yi are false (Yi= 0), and if z is false (z=0) only one Yi can

be true (Yi= 1).

3. Constraint Logic Programming (CLP) and Generalized Disjunctive Programming (GDP)

 In this section we explore the relationship between Constraint Logic Programming and

Generalized Disjunctive Programming. In the past ten years, Constraint Logic Programming

(CLP) (Henteryck, 1989; Tsang, 1999; Darby Dowman et al., 1997) has become an important

tool for solving scheduling, resource allocation and planning problems, which are difficult

combinatorial optimization problems. In CLP the problem is modeled in more expressive logic

syntax. For instance, conditional constraints, constraints on all-different and meta-constraints are

employed in the problem formulation. CLP solves the model by creating a search tree based on

enumeration, and during the search it reduces the domain of the variables by propagating the

constraints. On the other hand, Generalized Disjunctive Programming (GDP) has been applied to

design, scheduling and synthesis problems, which can leads to improved models compared to

MINLP (Raman and Grossmann, 1994; Lee and Grossmann, 1999). Several algorithms have been

proposed for linear and nonlinear GDP problems. A brief review of these methods is presented

later in the paper.

 6

 Below, the transformations of some logic constraints into the GDP form are proposed.

The objective is to show that some common constraints of CLP can be reformulated as a GDP.

Finally, in this section we present an example of the transformations.

Consider the three following cases of conditional constraints that arise in CLP (Hanteryck, 1989):

case a) g(x) ≤ 0 ⇒ f(x) ≤ 0 (3)

where g(x), f(x) are scalar functions. This implication can be transformed to:

¬ g(x) ≤ 0 ∨ f(x) ≤ 0 (4)

 where ∨ is the “or” operator and ¬ is the negation of the constraint. The latter implies the non-
satisfaction of the constraint, with which (4) can be written as:

 g(x) ≥ ε ∨ f(x) ≤ 0 (5)

For implementation, typical values of ε can be chosen between 0.0001 and 0.001.

Assigning Boolean variables to (5) we obtain a two-term disjunction covered by the model GDP,

 







≤

∨







≥ 0 f(x)

Y

 g(x)

Y 21

ε
 (6)

It should be noted that for the case when g(x) and f(x) are vector functions, the implication in (3)
can be written as:

 0 (x)f 0 (x)g j
Jj

i
Ii

≤∧⇒≤∧
∈∈

 (7)

Eliminating the implication,

) 0 (x)f () 0 (x)g (j
Jj

i
Ii

≤∧∨≤∧¬
∈∈

 (8)

moving the negation inward yields,

) 0 (x)f () 0 (x)g (j
Jj

i
Ii

≤∧∨≤¬∨
∈∈

 (9)

it can be transformed to:
 ()0 (x)f 0 (x)g ji

JiIj
≤∨≤¬∨∧

∈∈
 (10)

 7

which in turn can be written in GDP form as:

 J j
 0 (x)f

Y

 (x)g

Y

j

j

i

i

I i
∈












≤

∨







≥

∨
∈ ε

 (11)

case b) Yi ⇒ gi(x) ≤ 0 (12)

where Yi is a Boolean variable and gi(x) a vector function. To cover the negation of this

implication we need to expand it to:

Yi ⇒ gi(x) ≤ 0 ∨ ¬Yi ⇒ x∈ D (13)

allowing x to lie in the relaxed domain D when Yi is not true. The expression in (13) can be

readily be written as a two term disjunction of the model (GDP),









∈
¬

∨







≤ D x

Y

 0 g(x)

Y
 ii (14)

Similarly, when we have the opposite implication:

gi(x) ≤ 0 ⇒ Yi (15)

it can be transformed to,

¬ gi(x) ≤ 0 ∨ Yi, (16)

which yields the GDP form,









∈

∨







≥

¬
 D x

Y

 g(x)

Y
 ii

ε
 (17)

case c)

 Ωi(Y) ⇒ hi(x) ≤ 0 ∨ ¬Ωi(Y) ⇒ gi(x) ≤ 0 (18)

where Ωi(Y) is a set of logic propositions which has a value of true if all are satisfied. Introducing

a Boolean variable Zi for Ωi(Y), (18) can be expressed as:

 Zi ⇒ hi(x) ≤ 0 ∨ ¬ Zi ⇒ gi(x) ≤ 0 (19)

 8

The final representation of (19) as a disjunction in GDP form is given by:

 







≤

¬
∨








≤ 0 (x)g

Z

 0 (x)h

Z

i

i

i

i
 (20)

Ωi(Y) ⇔ Zi

case d)

An additional case that is of interest is embedded disjunctions that do not directly fit the GDP

form. These arise for instance in multiperiod design problems (Van der Hever and Grossmann,

1999). An example is the following disjunction:

















≤
∨

























≤

∨







≤ 0 g(x)

Y

0 (x)h

Z

0 (x)h

Z

 Y
2

2

2

1

1

1

 (21)

which implies that if Y1=True, this is an additional disjunction for Z1 and Z2.

Although disjunctions like in (21) are not covered in model GDP, they can be transformed to non-

embedded disjunctions as follows:

 







≤

∨







∨ 0 g(x)

Y

 Z Z

Y
 2

21

1 (22)

 







≤

∨







≤ 0 (x)h

Z

 0 (x)h

Z

2

2

1

1 (23)

Simplifying the first disjunction in (22) yields,

Y1 ∨ Y2
 Z1 ∨ Z2 ⇔ Y1 (24)
 Y2 ⇒ g (x) ≤ 0

transforming the implication as in case b) produces:

 







∈

¬
∨








≤ D x

Y

 0 g(x)

Y
 22 (25)

From (22)-(25) the final GDP form of an embedded disjunction is given by:

 9

 







≤

∨







≤ 0 (x)h

Z

 0 (x)h

Z

2

2

1

1 (26)









∈

¬
∨








≤ D x

Y

 0 g(x)

Y
 22

 (27)

 Y1 ∨ Y2
 Z1 ∨ Z2 ⇔ Y1 (28)

Thus, what the transformations for CLP constraints and the embedded disjunctions have shown is

that a rather broad set of logic constraints can be converted into the disjunctions as in (GDP), or

for that matter as in (PH).

Example of a CLP model converted to GDP form

We show next how a complex CLP model can be converted into a GDP. The following example

corresponds to a CLP model formulated in the ILOG solver:

Continuous variables : x ≥ -5, y ≥ 0
Integer variables : k=0,1,2,3,4
Constraints :

x3 + 10 x = yx + 2k

kx + 7.7 y = 2.4

(k-1)y+1 ≤ 10 (29)

{ [log(y + 2x+12) ≤ k+5] ∨ [y ≥ k2] } ⇒⇒ { x ≤ 0 ∧ y ≤ 1 }

x ≤ 0 ⇒⇒ k > 3

With the transformations described above, the model can be formulated in GDP form as follows:

Continuous variables : x ≥ -5, y ≥ 0
Integer variables : k=0,1,2,3,4
Constraints :

x3 + 10 x = yx + 2k

kx + 7.7 y = 2.4

(k-1)y+1 ≤ 10

 10

















≤
≤∨

















≤−

≥+−++
1 y

0 x

Y

 k y

 5) (k 12)2x log(y

 Y 2

2

1

ε
ε (30)

 







≥

∨







≥ 3 k

W

 x

W 21

ε

4. Language

LOGMIP is the first code that was implemented for solving nonlinear/discrete problems

formulated in the form of the hybrid model (PH). In that solver we adopted some constructions of

the mathematical programming language of GAMS for expressing disjunctions (Vecchietti and

Grossmann, 1999). Writing a disjunction in GAMS language is not natural and not concise since

we are using a language created to define a model in algebraic form. Also, logic propositions

have to be provided to the model as integer constraints to pose a problem in the form of problem

(PH). A Prolog (Tourn, 1995) program developed to transform the logical expression into

inequalities is executed separately of LOGMIP. The program output is included in the LOGMIP

input file. In this work we describe a new language in LOGMIP for expressing models

formulated in the form of PH or GDP. The idea is to provide capabilities for describing in a

natural form disjunctions, logic expressions and constraints within a mathematical programming

language.

 In the past, several constructions have been proposed for expressing conditional models

like the one proposed in the PH and GDP formulations. Pantelides (1988) proposed an input

language for dynamic simulation in SpeedUp based on IF statements and the logical operators

AND, OR, NOT. The language is used for expressing discontinuities in the model and logical

conditions of any complexity. Recently, Rico-Ramirez (1998) proposed several constructions

based on WHEN...CASE, SELECT...CASE, SWITCH CASE, CONDITIONAL statements for

the description of conditional models in the equation oriented software ASCEND. There are also

some other solvers for constraint logic programming such as ECLiPSe and ILOG where

conditional constraints, logic constraints and special constructs like the all-different can be

expressed in high-level languages (Bockmayr and Kasper, 1998).

 11

The symbols, reserved words, components and language syntax to express models in the

form of generalized hybrid/disjunctive programming problem (PH) are described bellow.

The language consists of: Boolean variables, continuous and binary variables,

mathematical, relational and logical operators, selection statements of the type

“IF...THEN...ELSE...ENDIF”. The descriptions of these components are as follows:

Operands, operators and statements:

Binary and continuous variables.

Boolean variables, which can take values true or false.

Mathematical operators: +, -, *, /.

Relational operators: = (equal), <= (less than or equal to), >= (greater than or equal to).

Logical operators: ∧ (and), ∨ (or), ~(not,!), ->(implication), <->(equivalence).

Selection statements of the form IF...THEN...ELSE...ENDIF.

The expressions that can be formulated with this approach are the following:

Expressions

• Selection statements of the form IF...THEN...ELSE...ENDIF are used to formulate a

disjunction. It selects the set of constraints to be applied after evaluating a logical

expression (or a single Boolean variable) to true or false. Example:

 IF (Yi) THEN hi(x) ≤ 0

 ELSE gi(x)≤0

 ENDIF

• Logic propositions: used to express (by the logical operators previously described)

relationships between the Boolean variables. Example:

y1 ∧ ¬y2 ⇒ y3 ∨ y4

• Logic expressions: expressions relating variables (continuous, binary or Boolean) and

operators (mathematical and/or logic). Examples: [(x+3) ⇒ (y+4)]. Although these

statements are not contained in problem (PH), from the previous section these

expressions can be converted into disjunctions (by the user or by LOGMIP) such that

can be processed by the algorithms.

 12

 Hence, a rather large class of logic expressions is allowed in our language. Allowing the

formulation of complex logical sentences allows the problem to be set up in a more flexible way

for the user. For the solution, however, we transform these logic expressions into propositional

logic and disjunctions as were discussed in the previous section.

 We have chosen the selection statement IF...THEN...ELSE...ENDIF because it states

naturally and directly all types of disjunctions. Two term disjunctions are formulated with a

single IF sentence. Through nesting sentences we can define disjunction with several terms

and/or embedded disjunctions. Below we show how to write the disjunctions in the proposed

language.

Two terms disjunctions
















∨
















 False True

 IF (logic expression) THEN
 Constraints to be applied when logic expression is TRUE
 ELSE
 Constraints to be applied when logic expression is FALSE
 ENDIF

Several Terms Disjunction
















∨
















∨
















 3 2 1

IF (logic expression1) THEN

 Constraints to be applied when logic expression1 is TRUE
ELSE IF (logic expression2) THEN

 Constraints to be applied when logic expression2 is TRUE
ELSE IF (logic expression3) THEN

 Constraints to be applied when logic expression3 is TRUE
 ENDIF

Note that the above also applies to disjunctions with two terms if each of them is activated by a
different logic expression.

 13

Embedded Disjunction

Case a)

The first case involves disjunctions terms that can be true or false:

 1 False

 2 False

 3 False

 3 True

 2 True

1True























∨






































∨

























∨









IF (logic expression1) THEN
 Constraints to be applied when logic expression1 is TRUE

IF (logic expression2) THEN
 Constraints to be applied when logic expression2 is TRUE

 IF (logic expression3) THEN
 Constraints to be applied when logic expression3 is TRUE
 ELSE
 Constraints to be applied when logic expression3 is FALSE
 ENDIF
 ELSE
 Constraints to be applied when logic expression2 is FALSE
 ENDIF
ELSE
 Constraints to be applied when logic expression1 is FALSE
ENDIF

Case b)

For this case the disjunction terms are handled by different Boolean variables:

 2 True

 5 True 4 True

 3 True

1True



















∨





























∨








∨









 14

IF (logic expression1) THEN
 Constraints to be applied when logic expression1 is TRUE

IF (logic expression3) THEN
 Constraints to be applied when logic expression3 is TRUE

ELSE IF (logic expression4) THEN
 Constraints to be applied when logic expression4 is TRUE

ELSE IF (logic expression5) THEN
Constraints to be applied when logic expression5 is TRUE

ENDIF
ELSE IF (logic expression2) THEN
 Constraints to be applied when logic expression2 is TRUE
ENDIF

 In figure 1 we present the input file of the problem (30) written with the new language.

5. Overview of the solution algorithms

The tree diagram of Figure 2 shows the different methods that can be used to solve the

Hybrid (PH), Disjunctive (GDP) and MINLP (PA) models. The diagram also shows the

conditions and transformations needed for these problems to be solved by the algorithms, which

are in the lowest level of the tree.

The Logic Based OA (Outer Approximation) and the Logic Based GBD (Generalized

Benders Decomposition) methods can be applied for disjunctive problems (GDP) involving two

terms disjunctions like the one proposed by Turkay and Grossmann (1996). Extensions of these

algorithms can be applied for the case of the hybrid form (Vecchietti and Grossmann, 1999). In

the same way the GDP form through the generation of the convex hull of the nonlinear

disjunctions can be solved by the Branch and Bound (B&B/CRP) algorithm proposed by Lee and

Grossmann (1999). This method can be extended to the hybrid formulation in order to handle

both the disjunctions and the binary variables. The Hybrid and GDP representations can be

reformulated as MINLP problems replacing the disjunctions by Big-M constraints or generating

the Convex Hull (Lee and Grossmann, 1999). Once the transformation has been made, any

method for MINLP can be applied. The best known algorithms for solving a MINLP problem are

Branch and Bound (B&B) (Gupta and Ravindran (1985), Ryo and Sahinidis (1995), Stubbs and

Mehrotra (1996)), Outer-Approximation (OA) (Duran and Grossmann, 1986) and its extensions

Outer-Approximation/Equality-Relaxation/Augmented-Penalty (OA/ER/AP) (Viswanathan and

 15

Grossmann, 1990) , Generalized Benders Decomposition (GBD) (Geoffrion, 1972) and Extended

Cutting Plane (ECP) (Westerlund and Petterson, 1995).

6. Implementation

 In the new version of LOGMIP, nonlinear discrete/continuous programs can be

formulated in any of the three representations presented before: PH, GDP and MINLP. Aside

from the language, unique capabilities in LOGMIP are the selection between several formulation

and solution methods.

For the problem formulation, the language previously presented is extended in GAMS for

stating logic constraints, logic propositions and disjunctions. The new language is a superset of

the GAMS language. In this way we can get the capabilities and advantages of both the

mathematical and the logic expressions for setting up a problem. A parser has been developed for

the recognition of logic constructions of the language. In that way, the input file for the new

version of LOGMIP includes the mathematical programming language of GAMS and all the logic

sentences. A precompiler step is first executed, and the input file is transformed into a file ready

to be compiled by GAMS plus another file containing all the information of the logic needed for

the solution algorithms. This file is read when the algorithm is executed. Figure 3 shows the

flowchart of the new version of LOGMIP.

At the level of the solution methods, the code of DICOPT++ has been used as a base for

the implementation of the ECP and GBD MINLP algorithms. For the case of the algorithms that

consider directly the disjunctions in the formulation, we have implemented the Logic-Based OA

algorithm and the convex hull transformation. We intend to add the disjunctive branch and bound

method in the future. As for the solutions methods the defaults are as follows:

a) If the problem is posed as an MINLP the OA method is implemented and DICOPT++ is

applied.

b) If the problem is posed as a GDP, the convex hull transformation is used for the

disjunctions, and the logic propositions are transformed in equation form. The resulting

GDP is solved as an MINLP.

c) If the problem is posed as the hybrid model (PH), then the same transformations as in (b)

are used.

 16

It should be noted that in above cases the advantage is that the user no need to supply initial

guesses since the default initialization in GAMS is invoked.

 For the case when the user wants to apply the Logic-Based OA, which would be for

process networks expressed in the form of (GDP) or (PH), the user must supply an initialization

through set covering with additional initial values for the variables.

7. Examples

 Three examples have been solved for illustration purposes. The first problem corresponds

to the transformed CLP example in (30). That PH formulation was converted to an MINLP by the

Convex Hull transformation. The OA method was used and the solution was obtained at the first

step of the algorithm when the relaxed problem was solved. The solution of this problem is x=-

1.285, y= 0.979 and k=4.

The other problems have been solved with LOGMIP with several configurations and

algorithms. The data for these examples can be found in Vecchietti and Grossmann (1999).

The second example corresponds to a process network superstructure (see Figure 4) where

the optimal configuration has to be found. The input file of the GDP formulation for this problem

with the new language can be found in Appendix A. The results obtained in the solution of this

problem are presented in Table 1.

The third example is a multiproduct batch plant design where the objective is to determine

the unit design, number of units in parallel and the storage tank location and design in order to

minimize the investment cost. This example has been also solved considering different algorithms

and formulations. The results obtained are shown in Table 2.

 From the results presented in the previous tables it can be seen that no formulation

outperforms the other. Different number of iterations, and hence computational time, are needed

to reach the solution and also the optimal values of the starting points differ. Therefore, it is

important to have a general and flexible tool where not only the formulation but also the

algorithm can be selected for solving a discrete/continuous nonlinear problem.

8. Concluding remarks

 This paper has described a generalized modeling framework and solution techniques for

nonlinear discrete/continuous problems. The proposed approach allows the representation of the

 17

same problem with different formulations. These can be expressed in terms of equations only,

and/or disjunctions and logic constraints. We have presented the transformations between several

logic constraints, which are frequent in Constraint Logic Programming (CLP), into the

Generalized Disjunctive Programming (GDP) form. The significance of these transformations is

that problems with logic constraints can be translated into the disjunctive form of problems PH or

GDP. We have also proposed a language for the expression of logic constraints and disjunctions.

The selection sentences IF...THEN...ELSE...ENDIF have been chosen for expressing

disjunctions. The choice was based on the simplicity and expressiveness for posing disjunctions

of different levels of complexity. The proposed language also includes the operators, statements

and symbols for posing logic expressions and propositions. The language is a superset of the

GAMS mathematical programming language. This combination allows the specification of

complex mathematical/logic program optimization problems. A parser for checking the syntax,

analysis and transformation of the logic sentences into readable files for the solvers has been

developed. A brief overview of the algorithms for the solution of these problems was given, and

several examples were presented. We intend to report in the future more extensive results once

the development of the new version of LOGMIP has been completed.

Acknowledgments. The authors are grateful for the financial support to NSF International
Cooperative Research (grant INT-9724823) and to CONICET for the Argentina counterpart.

REFERENCES

Bjorkqvist, J. and Westerlund T.. Automated Reformulation of Disjunctive Constraints in MINLP
Optimization. Comp. and Chem. Eng., 23,Supp., S11-S14, 1999.

Bockmayr, A. and Kasper T.. Branch and Infer: A Unifying Framework for Integer and Finite
Domain Constraint Programming. INFORMS Journal of Computing, 10 (3), 1998.

Darby-Dowman K., Little J., Mitra G. and Zaffalon M.. Constraint Logic Programming and
Integer Programming Approaches and Their Collaboration in Solving an Assignment Scheduling
Problem. Constraints, 1, 245-264, 1997.

Duran M. and Grossmann I.E.. An Outer-Approximation Algorithm for a Class of Mixed-Integer
Nonlinear Programs. Mathematical Programming, 36, 307-339, 1986.

Geoffrion, A. M.. Generalized Benders Decomposition. Journal of Optimization Theory and
Application, 10 (4), 237-260, 1972.

 18

Gupta O.K. and Ravindran V., Branch and Bound Experiments in Convex Nonlinear Integer
Programming, Management Science, 31(12), 1533-1546, 1985.

Henteryck, P.V.. Constraint Satisfaction in Logic Programming. MIT press, Cambridge, MA,
1989.

Hajian, M. T.; El-Sakkout, H.; Wallace, M.; Lever, J. M. and Richards E.B.. Towards a Closer
Integration of Finite Domain Propagation and Simplex-Based Algorithms. IC-Parc Publications
(UK) (http://www.icparc.ic.ac.uk/papers.html), 1995.

Lee, S. and Grossmann, I.E.. Generalized Disjunctive Programming: Nonlinear Convex Hull
Relaxation and Algorithms. Submitted for publication, 1999.

Pantelides, C. C.. SpeedUp recent advances in process simulation. Comp. and Chem. Eng., 12
(7), 745-755, 1988.

Raman R. and Grossmann I.E.. Symbolic Integration for Logic in Mixed-Integer Linear
Programming Techniques for Process Synthesis. Comp. Chem. Eng., 17 (9), 909-927, 1993.

Raman R. and Grossmann. Modeling and Computational Techniques for Logic Based Integer
Programming. Comp. Chem. Eng., 18 (7), 563-578, 1994.

Rico-Ramirez V.. Representation, Analysis and Solution of Conditional Models in an Equation-
Based Environment, Ph.D. Thesis, Dept. Chemical Eng., Carnegie Mellon University, Pittsburgh,
PA, 1998.

Ryoo, H. S., and N. V. Sahinidis, Global Optimization of Nonconvex NLPs and MINLPs with
Applications in Process Design. Comp. Chem. Eng., 19 (5), 551-566, 1995.

Stubbs R. and Mehrotra S.. Branch and Cut Methods for Mixed 0-1 Convex Nonlinear
Programming. Paper presented on Fifth SIAM Conference on Optimization, Victoria, British
Columbia, Canada, 1996.

Tourn Michel. PROLOG Program for converting propositions into linear inequalities. Chemical
Engineering Department , Carnegie Mellon University, Pittsburgh, PA, 1995.

Tsang, E.P.. Formulations at Constraint Satisfaction. Academic Press, 1993.

Turkay M. and Grossmann I.E.. Logic-Based Algorithms for the Optimal Synthesis of Process
Networks. Comp. Chem. Eng., 20 (8), 959-978, 1996.

Van der Heever S. and Grossmann I.E.. Disjunctive multiperiod Optimization Methods for
Design and Planning at Process Systems. Comp. Chem. Eng., 23, 1075-1095, 1999.

Vecchietti A. and Grossmann I.E.. LOGMIP : A Disjunctive 0-1 Nonlinear Optimizer for Process
System Models. Comp. Chem. Eng., 23,. 555-565, 1999.

 19

Viswanathan J.V. and Grossmann I.E.. A Combined Penalty Function and Outer-Approximation
method for MINLP Optimization. Comp. Chem Eng., 14 (7), 769-778, 1990.

Westerlund and Pettersson. An Extended Cutting Plane Method for Solving Convex MINLP
Problems. Comp. Chem. Eng., 19, S131-36, 1995.

 20

Appendix A. Input file of Processes Superstructure example with new language

$TITLE APPLICATION OF THE LOGIC-BASED MINLP ALGORITHM IN EXAMPLE #3
* FOR THIS PROBLEM THE FORMULATION IS DISJUNCTIVE
$OFFSYMXREF
$OFFSYMLIST
* SELECT OPTIMAL PROCESS FROM WITHIN GIVEN SUPERSTRUCTURE.
*
* REFERENCE: MARCO DURAN , PH.D. THESIS , 1984.
* CARNEGIE-MELLON UNIVERSITY , PITTSBURGH , PA.

SETS I PROCESS STREAMS / 1*25 /
 J PROCESS UNITS / 1*8 /

 PARAMETERS CV(I) VARIABLE COST COEFF FOR PROCESS UNITS - STREAMS/
 3 = -10 , 5 = -15 , 9 = -40
 19 = 25 , 21 = 35 , 25 = -35
 17 = 80 , 14 = 15 , 10 = 15
 2 = 1 , 4 = 1 , 18 = -65
 20 = -60 , 22 = -80 /;

 VARIABLES PROF PROFIT ;
 BINARY VARIABLES Y(J) ;
 POSITIVE VARIABLES X(I) , CF(J) ;

 EQUATIONS

* BALANCES, DESIGN SPECIFICATIONS
* HOLDS INDEPENDENT OF DISCRETE CHOICES
* ---
 MASSBAL1, MASSBAL2, MASSBAL3, MASSBAL4, MASSBAL5, MASSBAL6,
 MASSBAL7, MASSBAL8
 SPECS1, SPECS2, SPECS3, SPECS4

* LOGIC PROPOSITIONS DECLARATIONS
*--
 LOGIC1, LOGIC2, LOGIC3, LOGIC4, LOGIC5, LOGIC6, LOGIC7, LOGIC8,
 LOGIC9, LOGIC10, LOGIC11, LOGIC12, LOGIC13

* DISJUNCTIVE CONSTRAINTS:
* ---------------------------------------
* Process 1
 INOUT11, INOUT12, INOUT13, INOUT14
* Process 2
 INOUT21, INOUT22, INOUT23, INOUT24
* Process 3
 INOUT31, INOUT32, INOUT34
* Process 4
 INOUT41, INOUT42, INOUT43, INOUT44, INOUT45
* Process 5
 INOUT51, INOUT52, INOUT53, INOUT54

* Process 6

 21

 IN OUT61, I NOUT62, I NOUT63, I NOUT64
* P r ocess 7
 IN OUT71, I NOUT72, I NOUT73, I NOUT74
* P r oc ess 8
 IN OUT81, I NOUT82, I NOUT83, I NOUT84, IN OUT85, I NOUT86
*
 OBJETIV O OBJECTIV E F UNCTI ON DEFI NI TI ON ;

* B OUNDS S ECTI ON:
* - - - - -- - - - - - -- - -
 X. UP(' 3') = 2.0 ;
 X. UP(' 5') = 2. 0 ;
 X. UP(' 9') = 2.0 ;
 X. UP(' 10') = 1.0 ;
 X. UP(' 14') = 1.0 ;
 X. UP(' 17') = 2.0 ;
 X. UP(' 19') = 2.0 ;
 X. UP(' 21') = 2.0 ;
 X. UP(' 25') = 3.0 ;

*
* S ET COVERIN G I NI TI ALI ZATI ON
*
I NI TIA L B U 3;

TRUE Y(' 1') Y(' 3') Y (' 4') Y ('7 ') Y ('8 ') ;
TRUE Y(' 2') Y(' 3') Y (' 4') Y ('6 ') Y ('8 ') ;
TRUE Y(' 1') Y(' 3') Y (' 5') Y ('8 ') ;

* E QUATI ONS DEFI NI TI ONS
* - - - - -- - - - - - -- - - - -- - - - - - -- - - - -- - - - - - -- - - - -- - - - - - -- - - - -- - - - - - -- - - - -
 MASSBAL1 . . X(' 13') =E= X(' 19') + X(' 21') ;
 MASSBAL2 . . X(' 17') =E= X(' 9') + X(' 16') + X ('2 5') ;
 MASSBAL3 . . X(' 11') =E= X(' 12') + X(' 15') ;
 MASSBAL4 . . X(' 3') + X (' 5') = E= X(' 6') + X(' 11') ;
 MASSBAL5 . . X(' 6') =E= X(' 7') + X(' 8') ;
 MASSBAL6 . . X('2 3') =E= X(' 20') + X ('2 2') ;
 MASSBAL7 . . X(' 23') =E= X(' 14') + X(' 24') ;
 MASSBAL8 . . X(' 1') =E= X(' 2') + X(' 4') ;

 SPECS1 . . X(' 10') =L= 0. 8 * X ('1 7') ;
 SPECS2 . . X(' 10') =G= 0. 4 * X ('1 7') ;
 SPECS3 . . X(' 12') =L= 5. 0 * X ('1 4') ;
 SPECS4 . . X(' 12') =G= 2. 0 * X ('1 4') ;

* L OGI C PROPOSI TIO NS
* - - - - - - - -- - - - - - -- - - - -- - - - - - -- - - - -- - - - - - -- - - - -- - - - - - -- - - - -- - - - - - --
 LOGI C1. . (y(' 1') and ~ y(' 2')) o r (~y(' 1') a nd y(' 2')) ;
 LOGIC 2. . y(' 1') - > (y(' 3') o r y(' 4') o r y(' 5')) ;
 LOGIC 3. . y(' 2') - > (y(' 3') o r y(' 4') o r y(' 5')) ;
 LOGIC 4. . y(' 3') - > (y(' 1') o r y(' 2')) ;
 LOGIC 5. . y(' 3') - > y ('8 ') ;
 LOGIC 6. . (y (' 4') a nd ~y (' 5')) o r (~ y(' 4') & y (' 5')) ;
 LOGIC 7. . y(' 4') - > (y(' 6') o r y(' 7')) ;
 LOGIC 8. . y(' 5') - > (y(' 1') o r y(' 2')) ;
 LOGIC 9. . y(' 5') - > y ('8 ') ;

 22

 LOGIC10.. y('6') -> y('4') ;
 LOGIC11.. ~y('6') <-> y('7') ;
 LOGIC12.. y('7') -> y('4') ;
 LOGIC13.. y('8') -> (y('3') or y('5') or ~y('3') or y('5')) ;

* DISJUNCTION SPECIFICATIONS
* --
IF (Y('1'))THEN
 INOUT11.. EXP(X('3')) -1. =E= X('2') ;
 INOUT14.. CF('1') =E= 5 ;
ELSE
 INOUT12.. X('2') =E= 0 ;
 INOUT13.. X('3') =E= 0 ;
ENDIF

IF (Y('2')) THEN
 INOUT21.. EXP(X('5')/1.2) -1. =E= X('4') ;
 INOUT24.. CF('2') =E= 8 ;
ELSE
 INOUT22.. X('4') =E= 0 ;
 INOUT23.. X('5') =E= 0 ;
ENDIF

IF(Y('3')) THEN
 INOUT31.. 1.5 * X('9') + X('10') =E= X('8') ;
 INOUT34.. CF('3') =E= 6 ;
ELSE
 INOUT32.. X('9') =E= 0 ;
ENDIF

IF(Y('4')) THEN
 INOUT41.. 1.25 * (X('12')+X('14')) =E= X('13') ;
 INOUT45.. CF('4') =E= 10 ;
ELSE
 INOUT42.. X('12') =E= 0 ;
 INOUT43.. X('13') =E= 0 ;
 INOUT44.. X('14') =E= 0 ;
ENDIF

IF(Y('5'))THEN
 INOUT51.. X('15') =E= 2. * X('16') ;
 INOUT54.. CF('5') =E= 6 ;
ELSE
 INOUT52.. X('15') =E= 0 ;
 INOUT53.. X('16') =E= 0 ;
ENDIF

IF(Y('6')) THEN
 INOUT61 .. EXP(X('20')/1.5) -1. =E= X('19') ;
 INOUT64 .. CF('6') =E= 7 ;
ELSE
 INOUT62 .. X('19') =E= 0 ;
 INOUT63 .. X('20') =E= 0 ;
ENDIF

IF(Y('7'))THEN
 INOUT71 .. EXP(X('22')) -1. =E= X('21') ;

 23

 INOUT74 .. CF('7') =E= 4 ;
ELSE
 INOUT72 .. X('21') =E= 0 ;
 INOUT73 .. X('22') =E= 0 ;
ENDIF

IF(Y('8'))THEN
 INOUT81.. EXP(X('18')) -1. =E= X('10') + X('17');
 INOUT86 .. CF('8') =E= 5 ;
ELSE
 INOUT82.. X('10') =E= 0 ;
 INOUT83.. X('17') =E= 0 ;
 INOUT84.. X('18') =E= 0 ;
 INOUT85.. X('25') =E= 0 ;
ENDIF

 OBJETIVO .. PROF =E= SUM(J,CF(J)) + SUM(I , X(I)*CV(I)) + 122 ;

 OPTION LIMCOL = 0 ;
 OPTION LIMROW = 0 ;

 MODEL LOGIC /ALL/;
 LOGIC.optfile=1;
 SOLVE LOGIC USING LOGMIP MINIMIZING PROF;

 24

LIST OF TABLES

Table 1. Results of the Processes Superstructure example.

Table 2. Results of the Multiproduct Batch Plant example.

LIST OF FIGURES

Figure 1. Input file of problem presented in (30) with the new language.

Figure 2. Overview of the solutions algorithms.

Figure 3. Flowchart of LOGMIP.

Figure 4. Processes superstructure of second example.

 25

Table 1. Results of the Processes Superstructure example

Model
MINLP
(Big-M)

MINLP
 (Convex

Hull)
PH GDP

Algorithm ECP GBD OA OA
Logic

Based OA
Logic

Based OA
Variables 33 33 33 41 33 33
Discrete
variables

8 8 8 8 8 8

Constraints 32 32 32 51 52 52
Objective
value at
relaxation

-25.1** 15.08 15.08 62.6 73.1* 73.1*

Iterations
6 MIP

1 NLP
17 major

1 NLP
4 major

1 NLP
2 major

2 NLP
1 major

3 NLP
1 major

Optimum
value

68 68 68 68 68 68

 (**) Initial MIP
 (*) Initial NLP

 26

Table 2. Results of the Multiproduct Batch Plant example

Model
MINLP
(Big-M)

MINLP
 (Convex

Hull)
PH

Algorithm ECP OA OA
Logic

Based OA
Variables 114 113 225 113
Discrete
variables

53 53 53 53

Constraints 187 187 277 187
Objective
value at
relaxation

-134230** 219335 224165 305061*

Iterations 28 MIP 7 major 16 major 3 major
Objective
value

261883 261883 261883 261883

 (**) Initial MIP
 (*) Initial NLP

 27

Figure 1. Input file of problem presented in (30) with the new language

$TI TLE C LP Pr obl em f r om I LOG
$OFFSYMXREF
$OFFSYMLI ST

scal ar E P / 0. 000001/ ;

* V ari abl e de cl ara t i ons
*
var i abl es X , obj e;
posi ti ve v ari abl es Y;
i nt eger var ia bl e K ;
bi nary v ar i abl es Y1, Y 2, Z, W1 , W 2;

* E quat i on de cl ara t i ons
*
equati ons c on1, co n2, c on3, co st , f ir st 11, f i r st2 1, fi r s t 22, f i r st 31

 se cnd11, secnd21, s ec nd22, s ecnd31, pr op1;

* E quat i ons t hat hol d i ndependent o f di scr et e c hoi ces
*
con1.. POWER(x, 3) + 1 0.* X - EXP(X * LOG(Y)) + EXP(K* LOG(2)) = E= 0. 0 ;
con2.. K * X + 7. 7*Y - 2. 4 =E=0. 0 ;
con3.. E XP((Y +1) *L OG(K- 1)) =L = 1 0 ;

* DIS JUNCTIO NS
*
I F(Y1) T HEN
 f i r st1 1. . L OG(Y + 2 * X + 12) – (k- 5) = G= EP ;
 f i r st1 2. . Y - K* * 2 =L= E P;
ELSE I F(Y2) THEN
 secnd21. . X =L= 0;
 secnd22. . Y =L= 1;
ENDI F

I F(W1) T HEN
 f i r st3 1. . X =G= EP ;
ELSE I F(W2) THEN
 secnd31. . K =G= 3;
ENDI F

cost .. o bj e =E= x;

MODEL Logi c / al l /;

SOLVE Logi c USI NG DI SJUNCTI VE mi ni miz i ng obj e;

 28

Figure 2. Overview of the solutions algorithms

 HYBRID/GDP

 MINLP

 LOGIC BASED OA B&B(CRP) B&B OA GBD ECP
 LOGIC BASED GDB

For two terms
disjunctions

Reformulated as MINLP
by BIG-M

or Convex Hull

Convex Hull

 29

Figure 3. Flowchart of LOGMIP

 INPUT FILE

PRECOMPILER step

GAMS INPUT FILE

LOGIC INFO

GAMS COMPILER step

MATRIX and
CONTROL INFO

SOLUTION File

SOLVER step

 30

Figure 4. Processes superstructure of second example

1

2

5

8 4

3

7

6

