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Abstract

This paper describes a number of key modeling issues for the development of tools for
solving nonlinear discrete/continuous problems where logic/disunctive constraints are included
in the formulation. A generalized hybrid representation of these problems is presented. A
comparison between Constraint Logic Programming (CLP) and Generalized Disjunctive
Programming (GDP) is established together with several constraint transformations from CLP to
GDP. The components and expressions of a modeling language for setting up digunctions and
logic constraints are proposed. The language allows the specification of problems with complex
logic formulations. A parser is developed for the analysis and trandation of the logic sentences
into files ready to be used by the solvers. An overview of the solution algorithms is also given
together with severa aspects about the implementation as a superset of GAMS mathematical
programming language. Examples illustrating the capabilities of the proposed system are
described.



1. Introduction

In recent years there have been several efforts for incorporating logic in mathematicd and
optimization programming. The logic isintroduced at the level of problem formulation, and at the
level of solution techniques. Digunctive Programming (Raman and Grosgnann, 1994; Turkay
and Grosgmann 1996, Bjorkqgvist and Westerlund, 1999) and Constraint Logic Programming
(Hajian et al. 1995; Darby-Dowman et al, 1997) are examples of these efforts. A digunctive
program can be regarded as a mixed integer program involving disunctive mnstraints. Constraint
Logic Programming combines a powerful language to express combinatorial problems with
constraint propagation tedniques within an implicit enumeration seach. Compared to Mixed-
Integer Nonlinea Program (MINLP), both approaches offer significantly improved techniques
for modeling, and in many cases more dfedive solutions in the aeas of design, synthesis,
planning and scheduling of process engineering problems. The introduction of digunctions and
logic into the formulation is in many cases a more dired way of stating the problem. Although,
new models, agorithms and solvers have been proposed, challenges remain at the level of
modeling, language expressiveness solution techniques and general tools for solving logic-based
problems. In particular, when adaptations of languages conceved for mathematica programming
or complex dedarations are used for expressng a model with disunctions or logic constraints,
this can lead to ambiguous problem statements or models that are difficult to read or understand.

It is the purpose of this paper to propose a number of ideas and concepts for digunctive
programming regarding the modeling, language syntax and its implementation in a @mputer
code. The motivation is to develop general tools that can address nonlinear/discrete optimization
problems with logic in the formulation. For the problem representation we start from a genera
hybrid formulation including disunctions, Boolean and 01 variables for the discrete doices.
Logic propositions are included in the problem formulation for stating relations between the
Boolean variables. These propositions involve the logic operators “and’, “or”, “not” and
“implication”. The relationship between the digunctive representation and models from
constraint logic programming is then presented with the transformation of logic constraints and
embedded dsjunctions in the form of general digjunctions. Next, the basic d ements of alanguage
to expressagenera hybrid dsjunctive model are proposed, as well as the mnnection between the
models and the dgorithms available to solve them. Finaly, results obtained in the solution of

several examples are presented.



2. Generalized Hybrid representation

The model presented below corresponds to a generalized hybrid formulation for a
continuous discrete nonlinear program problem where the discrete choices are represented by

disunctions, Boolean variables and binary variables (Vecchietti and Grossmann, 1999):

mn Z= S+ f(x) + d'y
st
g(x) <0

r(x) + Dy <0
Ay >a (PH)
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In problem (PH) x and c are continuous variables, y are binary variables (0-1), Yix are
Boolean variables to establish whether a given term in a digunction is true [hix(X)<0], Q(Y) are
logical relations between Boolean variables, f(X) represents a linear/nonlinear objective function,
g(x) are linear/nonlinear inequalities that hold independent of the discrete choices, r(x)+Dy<0
corresponds to general mixed integer algebraic equations, Ay>a is a set of integer inequalities, d'y

are fixed cost terms.

When constraints involving binary variables are not present in (PH), this problem reduces

to the Generalized Disjunctive Program formulation by Raman and Grossmann (1994):



min Z= 2 ¢+ f(X)
st
g <0
O Y. O
0 £h, (<0 O kOSD (GDP)
Hc =vi H

Q(Y) = True
X OR" , Yy O{True, Falsg}™, ¢, =0

From (PH) it is also possible to obtain a Mixed Integer Non-Linear Programming problem

(MINLP) if disiunctions and Boolean variables are not included in the problem formulation:

mn Z= f(x)+d'y
st
g(x) <0
(PA)
r(x) + Dy<0

Ay >a

In this way problem (PH) provides the flexibility of modeling a problem as a GDP,
MINLP or a hybrid model.
The propositional logic in (PH) is expressed through the conjunction of q different

propositions,

A={Ly 0L, 0... OLy}

where L; is a logical proposition expressed in terms of [1 (and), O (or), = (negation, not), [
(implication) and < (equivalence) operators.

The set of clauses A can be transformed into the Conjunctive Normal Form (CNF)
(Clocksin and Méllish, 1981) which is expressed as follows:
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where P, and R are subsets of the Boolean variables that correspond to a subset of 0-1 variables
and s is the number of digunctive clauses. The CNF form implies that every clause in Q must be
satisfied. Although in previous work the propositional logic was mostly implemented in problems
of process synthesis to reflect the structural relationship between the units (Raman and
Grossmann, 1993), it can be applied to any type of problem where it is needed. The CNF set Q
can be transformed automatically into an equivalent set of integer inequalities (Tourn, 1995). It
should be noted that for the special case where we have the following multiple choice constraint

(at most one item),
z Yi <1 (1)

it is cumbersome to use propositional logic to represent it. However, using a slack Boolean

variable zwith a“exclusive or” for all the Boolean variables Y ;, yields a simple transformation:

Y. OY, 0. OYsOz[O ZYl +z =1 2

Inthisway if zistrue (z=1) all Y;arefalse (Y;=0), andif zisfase (z=0) only one Y; can
betrue (Yi=1).

3. Constraint Logic Programming (CLP) and Generalized Disjunctive Programming (GDP)

In this section we explore the relationship between Constraint Logic Programming and
Generalized Digunctive Programming. In the past ten years, Constraint Logic Programming
(CLP) (Henteryck, 1989; Tsang, 1999; Darby Dowman et a., 1997) has become an important
tool for solving scheduling, resource alocation and planning problems, which are difficult
combinatorial optimization problems. In CLP the problem is modeled in more expressive logic
syntax. For instance, conditional constraints, constraints on al-different and meta-constraints are
employed in the problem formulation. CLP solves the model by creating a search tree based on
enumeration, and during the search it reduces the domain of the variables by propagating the
constraints. On the other hand, Generalized Digunctive Programming (GDP) has been applied to
design, scheduling and synthesis problems, which can leads to improved models compared to
MINLP (Raman and Grossmann, 1994; Lee and Grossmann, 1999). Severa algorithms have been
proposed for linear and nonlinear GDP problems. A brief review of these methods is presented

later in the paper.



Below, the transformations of some logic constraints into the GDP form are proposed.
The objective is to show that some common constraints of CLP can be reformulated as a GDP.

Finally, in this section we present an example of the transformations.

Consider the three following cases of conditional constraints that arisein CLP (Hanteryck, 1989):
case a) gx)<0 O f(x) <0 3)

where g(x), f(x) are scalar functions. This implication can be transformed to:
- g(X) <0 O f(x) <0 4

where [is the “or” operator and - is the negation of the constraint. The latter implies the non-
satisfaction of the constraint, with which (4) can be written as:

gx)=¢ O f(x) <0 (5)
For implementation, typical values of € can be chosen between 0.0001 and 0.001.

Assigning Boolean variables to (5) we obtain a two-term disjunction covered by the model GDP,
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It should be noted that for the case when g(x) and f(x) are vector functions, the implication in (3)
can be written as:

E g,(x)<00 Ej f,(¥<0 (7)
Eliminating the implication,
(0 8.(9<0) 0 (0 f,9<0) ®

moving the negation inward yields,

iQ(ﬂgi(X)SO)D(jDDJ f,(x)<0) )
it can be transformed to:
0 (iDDJﬂgi(x)SO O0f,(0<0) (10)



which in turn can be written in GDP form as:

a vy, O 0 Yj O
upg g0 O 0joJd (11)
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case b) Yi O g(x)<0 (12

where Yi isaBoolean variable and gi(x) avector function. To cover the negation of this

implication we need to expand it to:

Y, O g(x)<0 0O =-Y;O x£JD (13
allowing x to liein the relaxed domain D when Y; is not true. The expression in (13) can be
readily be written as atwo term digunction of the model (GDP),

O Y 0O_0-Y C
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Similarly, when we have the opposite implication:

o] (X) <00 Yi (15)
it can be transformed to,
- g(x) <0 0OY; (16)
which yields the GDP form,
g =Y, O0_0 C
0 U g C (17)
0g¥=ze 0 [Oxub ¢
casec)

Q)0 h(x) <00 -Q((Y)U ¢gi(x) <0 (18)
where Q;(Y) isaset of logic propositions which has avalue of trueif all are satisfied. Introducing

aBoolean variable Z; for Q;(Y), (18) can be expressed as:

Zidh®<0 O -z0gX<0 (19



Thefina representation of (19) asadigunction in GDP form is given by:

z ~Z
h(x)<0
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QYY) = Z
case d)
An additional case that is of interest is embedded digunctions that do not directly fit the GDP
form. These arise for instance in multiperiod design problems (Van der Hever and Grossmann,
1999). An example is the following disjunction:
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which impliesthat if Y;=True, thisis an additional digunction for Z; and Z,.
Although digunctions likein (21) are not covered in model GDP, they can be transformed to non-
embedded digunctions as follows:
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Simplifying the first digunction in (22) yields,
Y1 0OY?
2,07, = Y4 (24)
Yo.O0gX)< 0
transforming the implication as in case b) produces:
O Y. o_0n-yY, C
0 o000, 0 [ (25)
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From (22)-(25) the final GDP form of an embedded disjunction is given by:
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Thus, what the transformations for CLP constraints and the embedded disjunctions have shown is
that a rather broad set of logic constraints can be converted into the digunctions asin (GDP), or
for that matter asin (PH).

Example of a CLP model converted to GDP form

We show next how a complex CLP model can be converted into a GDP. The following example
corresponds to a CLP model formulated in the ILOG solver:

Continuous variables : X = -5, 0
Integer variables : k=0,1,

Constraints:

y =
2,34
X2+ 10x = y* + 2¢

kx +7.7y=24

(k-1 <10 (29)

{ [log(y + 2x+12) < k+5] O[y=2k*1} 0 {x<00y<1}
x<00O k>3

With the transformations described above, the model can be formulated in GDP form as follows;

Continuous variables : x=-5 y=0
Integer variables : k=0,1,2,3,4
Constraints :

X2+ 10x = y* + 2¢
kx +7.7y=24

(k-1 <10
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4. Language

LOGMIP is the first code that was implemented for solving nonlinear/discrete problems
formulated in the form of the hybrid model (PH). In that solver we adopted some constructions of
the mathematical programming language of GAMS for expressing disunctions (Vecchietti and
Grossmann, 1999). Writing a digunction in GAMS language is not natural and not concise since
we are using a language created to define a model in algebraic form. Also, logic propositions
have to be provided to the model as integer constraints to pose a problem in the form of problem
(PH). A Prolog (Tourn, 1995) program developed to transform the logical expression into
inequalities is executed separately of LOGMIP. The program output is included in the LOGMIP
input file. In this work we describe a new language in LOGMIP for expressing models
formulated in the form of PH or GDP. The idea is to provide capabilities for describing in a
natural form digunctions, logic expressions and constraints within a mathematical programming
language.

In the past, severa constructions have been proposed for expressing conditional models
like the one proposed in the PH and GDP formulations. Pantelides (1988) proposed an input
language for dynamic simulation in SpeedUp based on IF statements and the logical operators
AND, OR, NOT. The language is used for expressing discontinuities in the model and logical
conditions of any complexity. Recently, Rico-Ramirez (1998) proposed severa constructions
based on WHEN...CASE, SELECT...CASE, SWITCH CASE, CONDITIONAL statements for
the description of conditional models in the equation oriented software ASCEND. There are also
some other solvers for constraint logic programming such as ECLiPSe and ILOG where
conditional constraints, logic constraints and special constructs like the dl-different can be

expressed in high-level languages (Bockmayr and Kasper, 1998).
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The symbols, reserved words, components and language syntax to express models in the
form of generalized hybrid/disjunctive programming problem (PH) are described bellow.

The language consists of: Boolean variables, continuous and binary variables,
mathematical, relationa and logical operators, selection statements of the type
“IF...THEN...ELSE...ENDIF’. The descriptions of these components are as follows:

Operands, operators and statements:

Binary and continuous variables.

Boolean variables, which can take values true or false.

Mathematical operators: +, -, *, /.

Relational operators: = (equal), <= (less than or equal to), >= (greater than or equal to).
Logicd operators. [ (and), [ (or), ~(not,!), ->(implication), <->(equivaence).
Selection statements of the form IF...THEN...ELSE...ENDIF.

The expressions that can be formulated with this approach are the following:

Expressions
» Sdection statements of the form IF..THEN...ELSE...ENDIF are used to formulate a
digunction. It selects the set of constraints to be applied after evaluating a logica
expression (or asingle Boolean variable) to true or false. Example:
IF(Yi) THEN hi(x) <0
ELSE gi(X)<0
ENDIF
* Logic propositions: used to express (by the logical operators previously described)
rel ationships between the Boolean variables. Example:
yl O=-y20 y30y4
» Logic expressions. expressions relating variables (continuous, binary or Boolean) and
operators (mathematical and/or logic). Examples: [(x+3) O (y+4)]. Although these
statements are not contained in problem (PH), from the previous section these
expressions can be converted into digunctions (by the user or by LOGMIP) such that
can be processed by the algorithms.

11



Hence, a rather large class of logic expressions is alowed in our language. Allowing the
formulation of complex logical sentences allows the problem to be set up in a more flexible way
for the user. For the solution, however, we transform these logic expressions into propositional
logic and disjunctions as were discussed in the previous section.

We have chosen the selection statement IF..THEN...ELSE...ENDIF because it states
naturally and directly al types of digunctions. Two term digunctions are formulated with a
single IF sentence. Through nesting sentences we can define digunction with severa terms
and/or embedded digunctions. Below we show how to write the digunctions in the proposed
language.

Two terms digunctions

IF (logic expression) THEN

Constraints to be applied when logic expression is TRUE
ELSE

Constraints to be applied when logic expression is FALSE
ENDIF

Several Terms Digjunction

mOodO
mOoOaO
mOoOaO
mOodO
mOoOaO
M

IF (logic expression;) THEN

Constraints to be applied when logic expression; is TRUE
EL SE IF (logic expression,) THEN

Constraints to be applied when logic expression,is TRUE
EL SE IF (logic expressions) THEN

Constraints to be applied when logic expressionzis TRUE
ENDIF

Note that the above also applies to disunctions with two terms if each of them is activated by a
different logic expression.

12



Embedded Digunction
Casea)

Thefirst case involves digunctions terms that can be true or false:

O Truel 0 [OFalsel
o0 True2 0 DFdse20n S =
O 4 True3 0 OFalse3 07 O E SDD 0 0
] DDD O 0O O]
0 0 0O H HO O 0
. H B B

IF (logic expression;) THEN
Constraints to be applied when logic expression; is TRUE
IF (logic expression,) THEN
Constraints to be applied when logic expression, is TRUE
IF (logic expressions) THEN
Constraints to be applied when logic expressionzgis TRUE
ELSE
Constraints to be applied when logic expressionzis FALSE
ENDIF
ELSE
Constraints to be applied when logic expression,is FALSE
ENDIF
ELSE
Constraints to be applied when logic expression; is FALSE
ENDIF

Caseb)

For this case the digjunction terms are handled by different Boolean variables:

O Truel O dTrue2

B (Jrue3 0 _ OTrued J_Jrueb5 DB E E
0 oU o 20O Oq Y

0 0 g 0 O od O O

0 0O O 0

g g O 0
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IF (logic expression;) THEN
Constraints to be applied when logic expression; is TRUE
IF (logic expressions) THEN
Constraints to be applied when logic expressionzis TRUE
EL SE IF (logic expression;) THEN
Constraints to be applied when logic expressionsis TRUE
EL SE IF (logic expressions) THEN
Constraints to be applied when logic expressionsis TRUE
ENDIF
ELSE IF (logic expression,) THEN
Constraints to be applied when logic expression,is TRUE
ENDIF

In figure 1 we present the input file of the problem (30) written with the new language.
5. Overview of the solution algorithms

The tree diagram of Figure 2 shows the different methods that can be used to solve the
Hybrid (PH), Digunctive (GDP) and MINLP (PA) models. The diagram also shows the
conditions and transformations needed for these problems to be solved by the algorithms, which

arein the lowest level of the tree.

The Logic Based OA (Outer Approximation) and the Logic Based GBD (Generaized
Benders Decomposition) methods can be applied for digunctive problems (GDP) involving two
terms digunctions like the one proposed by Turkay and Grossmann (1996). Extensions of these
algorithms can be applied for the case of the hybrid form (Vecchietti and Grossmann, 1999). In
the same way the GDP form through the generation of the convex hull of the nonlinear
disunctions can be solved by the Branch and Bound (B& B/CRP) algorithm proposed by Lee and
Grossmann (1999). This method can be extended to the hybrid formulation in order to handle
both the digunctions and the binary variables. The Hybrid and GDP representations can be
reformulated as MINLP problems replacing the digunctions by Big-M constraints or generating
the Convex Hull (Lee and Grossmann, 1999). Once the transformation has been made, any
method for MINLP can be applied. The best known algorithms for solving a MINLP problem are
Branch and Bound (B&B) (Gupta and Ravindran (1985), Ryo and Sahinidis (1995), Stubbs and
Mehrotra (1996)), Outer-Approximation (OA) (Duran and Grossmann, 1986) and its extensions
Outer-Approximation/Equality-Rel axation/Augmented-Penalty (OA/ER/AP) (Viswanathan and

14



Grossmann, 1990) , Generalized Benders Decomposition (GBD) (Geoffrion, 1972) and Extended
Cutting Plane (ECP) (Westerlund and Petterson, 1995).

6. Implementation

In the new version of LOGMIP, nonlinear discrete/continuous programs can be
formulated in any of the three representations presented before: PH, GDP and MINLP. Aside
from the language, unigque capabilities in LOGMIP are the selection between several formulation
and solution methods.

For the problem formulation, the language previously presented is extended in GAMS for
stating logic constraints, logic propositions and disjunctions. The new language is a superset of
the GAMS language. In this way we can get the capabilities and advantages of both the
mathematical and the logic expressions for setting up a problem. A parser has been developed for
the recognition of logic constructions of the language. In that way, the input file for the new
version of LOGMIP includes the mathematical programming language of GAMS and all the logic
sentences. A precompiler step is first executed, and the input file is transformed into a file ready
to be compiled by GAMS plus another file containing all the information of the logic needed for
the solution algorithms. This file is read when the algorithm is executed. Figure 3 shows the
flowchart of the new version of LOGMIP.

At the level of the solution methods, the code of DICOPT++ has been used as a base for
the implementation of the ECP and GBD MINLP agorithms. For the case of the algorithms that
consider directly the digunctions in the formulation, we have implemented the Logic-Based OA
algorithm and the convex hull transformation. We intend to add the disjunctive branch and bound
method in the future. As for the solutions methods the defaults are as follows:

a) If the problem is posed as an MINLP the OA method is implemented and DICOPT++ is
applied.

b) If the problem is posed as a GDP, the convex hull transformation is used for the
disiunctions, and the logic propositions are transformed in equation form. The resulting

GDP issolved asan MINLP.

c) If the problem is posed as the hybrid model (PH), then the same transformations asin (b)
are used.

15



It should be noted that in above cases the advantage is that the user no need to supply initia
guesses since the default initialization in GAMS is invoked.
For the case when the user wants to apply the Logic-Based OA, which would be for
process networks expressed in the form of (GDP) or (PH), the user must supply an initiaization
through set covering with additional initial values for the variables.

7. Examples

Three examples have been solved for illustration purposes. The first problem corresponds
to the transformed CLP example in (30). That PH formulation was converted to an MINLP by the
Convex Hull transformation. The OA method was used and the solution was obtained at the first
step of the algorithm when the relaxed problem was solved. The solution of this problem is x=-
1.285, y=0.979 and k=4.

The other problems have been solved with LOGMIP with several configurations and
algorithms. The data for these examples can be found in Vecchietti and Grossmann (1999).

The second example corresponds to a process network superstructure (see Figure 4) where
the optimal configuration has to be found. The input file of the GDP formulation for this problem
with the new language can be found in Appendix A. The results obtained in the solution of this
problem are presented in Table 1.

The third example is a multiproduct batch plant design where the objective is to determine
the unit design, number of units in parallel and the storage tank location and design in order to
minimize the investment cost. This example has been aso solved considering different algorithms
and formulations. The results obtained are shown in Table 2.

From the results presented in the previous tables it can be seen that no formulation
outperforms the other. Different number of iterations, and hence computationa time, are needed
to reach the solution and also the optimal values of the starting points differ. Therefore, it is
important to have a general and flexible tool where not only the formulation but also the

algorithm can be selected for solving a discrete/continuous nonlinear problem.

8. Concluding remarks

This paper has described a generalized modeling framework and solution techniques for

nonlinear discrete/continuous problems. The proposed approach allows the representation of the
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same problem with different formulations. These can be expressed in terms of equations only,
and/or disjunctions and logic constraints. We have presented the transformations between severa
logic constraints, which are frequent in Constraint Logic Programming (CLP), into the
Generalized Digunctive Programming (GDP) form. The significance of these transformations is
that problems with logic constraints can be translated into the disjunctive form of problems PH or
GDP. We have also proposed a language for the expression of logic constraints and disunctions.
The selection sentences IF..THEN...ELSE...ENDIF have been chosen for expressing
disunctions. The choice was based on the simplicity and expressiveness for posing disjunctions
of different levels of complexity. The proposed language also includes the operators, statements
and symbols for posing logic expressions and propositions. The language is a superset of the
GAMS mathematical programming language. This combination allows the specification of
complex mathematical/logic program optimization problems. A parser for checking the syntax,
analysis and transformation of the logic sentences into readable files for the solvers has been
developed. A brief overview of the algorithms for the solution of these problems was given, and
several examples were presented. We intend to report in the future more extensive results once

the development of the new version of LOGMIP has been completed.
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Appendix A. Input file of Processes Superstructure example with new language

$TI TLE APPLI CATI ON OF THE LOG G- BASED M NLP ALGORI THM | N EXAMPLE #3
* FOR TH' S PROBLEM THE FORMULATI ON | S DI SJUNCTI VE

$OFFSYMKREF
$OFFSYMLI ST
*  SELECT OPTIMAL PROCESS FROM W TH N Gl VEN SUPERSTRUCTURE.
*
* REFERENCE: MARCO DURAN , PH.D. THESI S, 1984.
* CARNEG E- MELLON UNI VERSI TY , PITTSBURGH , PA
SETS I PROCESS STREAMS /[ 1*25 1/
J PROCESS UNI TS / 1*8 /
PARAVETERS Ccv(1) VARI ABLE COST COEFF FOR PROCESS UNI' TS - STREAMS/
3=-10 , 5=-15 , 9 =-40
19 = 25 , 21 = 35 , 25 =-35
17 = 80 , 14 = 15 , 10 = 15
2 = 1 , 4 = 1 , 18 = -65
20 = -60 , 22 = -80 !
VARl ABLES PROF PROFI T ;

Bl NARY VAR ABLES  Y(J) ;
POSI TI VE VARI ABLES X(1) , CF(J) ;

EQUATI ONS
* BALANCES, DESI GN SPECI FI CATI ONS
* HOLDS | NDEPENDENT OF DI SCRETE CHO CES
*

MASSBAL1, MASSBAL2, MASSBAL3, MASSBAL4, MASSBALS5, MASSBALG,
MASSBAL7, MASSBALS8
SPECS1, SPECS2, SPECS3, SPECS4

LOG C PROPOSI TI ONS DECLARATI ONS
LOG Cl, LOE@ 2, LOd C3, LOG 4, LOA G5, LOE G6, LOG C7, LOG Cs,
LOG C9, LOGG3 C10, LOG C11, LOA Cl2, LOG C13

DI SJUNCTI VE CONSTRAI NTS:
Process 1
I NOUT11, [ NOUT12, | NOUT13, | NOUT14
* Process 2
I NOUT21, | NOUT22, | NOUT23, | NOUT24
* Process 3
I NOUT31, | NOUT32, | NOUT34
* Process 4
I NOUT41, | NOUT42, | NOUT43, | NOUT44, | NOUT45
* Process 5
I NOUT51, | NOUT52, | NOUT53, | NOUT54

* Process 6
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INQUT61, | NOUT62, | NOUT63,1 NOUI64
*P rocess?7
INQUT71,1 NOUT72, I NOUT73,1 NOUI74
*P rocess 8
INOQUT81, | NOUT82, I NOUT83,1 NOU84,IN QUT85,| NOUT86

*

OBJETIVO OBJECTIV E FUNCTI ON DEFI NITI ON;

*B OUNDS SECTI ON:

X UP('3') = 20;
X.UP('5') = 2.0;
X UP('9') = 20;
X.UP('10') = 1.0;
X UP('14') = 1.0;
X UP('17') = 2.0;
X UP('19') = 2.0;
X UP('21') = 2.0;
X.UP('25') = 3.0;

*

*S ET COVERING | NITI ALI ZATI ON

*

INITIALB U 3;

TRUE Y("'1') Y('3)Y ("4)Y (7')Y ('8
TRUE Y('2') Y('3)Y ('4)Y (6')Y (8"):
TRUE Y('1') Y('3)Y ('5)Y (8');

*E QUATI ONS DEFI NITI ONS
*

MASSBAL 1 CX(13Y =E= X( 19')+ X('21') :
MASSBAL 2 LX( 1) =E= X('9)+X( '16') +X(25');
MASSBAL 3 o X(11) =E= X( 12')+ X('15") :
MASSBAL4 ..  X('3') +X( 5)= E= X( 6')+ X('11')

MASSBAL5 . X('e") =E= X( 7')+ X('8)

MASSBAL6 L X(23Y) =E= X('20)+X ('22)

MASSBAL7 COX(23) =E= X( 14')+ X('24")

MASSBAL 8 X1 =E= X(' 2')+ X('4)

SPECSL .. X("10)  =L= 0.8 *X (1 7')

SPECS . X('10)  =G= 0.4 *X (17)

SPECS3 .. X("12) =L= 5.0 *X (1 4")

SPECSA . X("12)  =G= 2.0 *X ('14")

*L OGIC PROPGCSI TIONS

LOAdCL. (y('1) and~y('2')o r( ~y('1%a ndy( '2"))
LOdC2.. y('1') ->(y( 3)or y('4)ory( '5)
LOGAC3.. y('2'") ->(y( 3)or y('4)ory( '5"))
LOGC4.. y('3') ->(y( 1')or y('2))

LOGC5.. y('3'") ->y('8")

LOAdCG6.. (y('4Y)Ya nd~y ('5) )or(~ y('4 )&y ( 5))
LOGC7.. y('4") ->(y( 6 )or y('7))

LOECS8.. y('5'") ->(y(t 1')or y('2))

LOECY9.. y('5) ->y('8")
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LOG Cl10.. y('6') ->y('4")

LOG Cll.. ~y('6') <->y('7")

LOG Cl2.. y('7') ->y('4")

LOAdC13.. y('8") -> (y('3") or y('5') or ~y('3")
* DI SJUNCTI ON SPECI FI CATI ONS

IF (Y('1))THEN

| NOUT11. . EXP(X('3")) -1. =E= X('2")

| NOUT14. . CF('1') =E= 5

ELSE

| NOUT12. . X('2') =E= 0

| NOUT13. . X("3') =E= 0

ENDI F

IF (Y('2")) THEN

| NOUT21. . EXP(X('5')/1.2) -1. =E= X('4")
I NOUT24. . CF('2'") =E= 8

ELSE

| NOUT22. . X("4') =E= 0

| NOUT23. . X('5') =E= 0

ENDI F

IF(Y('3")) THEN

| NOUT31. . 1.5 * X('9') + X('10') =E= X('8")
| NOUT34. . CF('3') =E= 6

ELSE

| NOUT32. . X('9') =E= 0

ENDI F

IF(Y("4")) THEN

| NOUT41. . 1.25 * (X("12')+X('14")) =E= X('13")
| NOUT45. . CF('4'") =E= 10

ELSE

| NOUT42. . X('12') =E= 0

| NOUT43. . X('13') =E= 0

| NOUT44. . X('14') =E= 0

ENDI F

I F(Y('5")) THEN

| NOUT51. . X('15') =E= 2. * X('16")

| NOUT54. . CF('5'") =E= 6

ELSE

I NOUT52. . X('15') =E= 0

| NOUT53. . X('16') =E= 0

ENDI F

IF(Y('6")) THEN

| NOUT61 .. EXP(X('20')/1.5) -1. =E= X('19")
| NOUT64 . . CF('6'") =E=7

ELSE

| NOUT62 .. X('19') =E= 0

| NOUT63 .. X('20') =E= 0

ENDI F

I F(Y("7")) THEN

I NOUT71 .. EXP(X('22')) -1. =E= X('21")
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I NOUT74 .. CF('7") =E= 4 :

ELSE

INOUT72 .. X('21') =E= 0 ;
INOUT73 ..  X('22') =E= 0 :
ENDI F

| F(Y(' 8')) THEN

INOUTB1..  EXP(X('18')) -1. =E= X('10') + X('17');
INOUT86 .. CF('8') =E= 5 ;
ELSE

INOUT82..  X('10') =E= 0 :
INOUT83..  X('17') =E= 0 :
INOUT84..  X('18') =E= 0 :
INOUT85..  X('25') =E= 0 :
ENDI F

OBJETIVO .. PROF =E= SUMJ, CF(J)) + SUMI , X(1)*CV(1)) + 122 ;

CPTI ON LI MCOL

o
CPTION LIMROW = 0

MODEL LOG C /ALL/;
LOG C. opt fil e=1;
SOLVE LOG C USING LOGM P M NI M ZI NG PROF;
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Table 1. Results of the Processes Super structur e example

(**) Initia MIP
(*) Initial NLP
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Table 2. Results of the M ultiproduct Batch Plant example

Logic

ECP OA OA Based OA
114 113 225 113
53 53 53 53
187 187 277 187
-134230" | 219335 224165 305061*
28 MIP 7 mgor 16 mgjor 3 mgjor
261883 | 261883 261883 261883

(**) Initial MIP
(*) Initial NLP
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Figure 1. Input fileof problem presented in (30) with the new language

$TI TLECLP Pr oblemf rom | LOG
$OFFSYMXREF
$OFFSYMLI ST

scalarE P/ 0.000001/;

*V ari ablede clarations

*

vari abl es X, obje;

positi vev ari ables Y,

i nteger variableK;

bi naryv ariables Y1,Y 2, Z, W1 ,6W2;

*E quationde clarations

*

equati onsc onl,co n2,c on3,co st,f ir st11,f irst21,fi rst22, first3l
secndll, secnd2l,s ecnd22,s ecnd3l1,pr opl;

*E quations that holdi ndependento f discretec hoices

*

conl.. POVER(x,3) +10* X - EXP(X*LOEY))+ EXP(K*LOE 2))= E=0. 0
con2.K *X+ 7.7*Y - 2.4 =E=0.0 ;
con3..E XP((Y+1)*LOE K-1))=L =10

*  DIS JUNCTIONS
*
I F(Y1) T HEN
firstl1l..L OQY +2*X+ 12) — (k-5)= G=EP;
firstl2..Y - K'*2 =L=EP;
ELSE | F(Y2) THEN
secnd21..X =L=0;
secnd22..Y =L=1;
ENDI F

| F(WL) T HEN
first31.. X =G=EP;
ELSE | F(W2) THEN
secnd31l. . K =G=3;
ENDI F
cost..o bje =E=x;

MODEL Logic /alll;

SOLVE Logi ¢ USI NG DI SJUNCTI VE mi ni miz i ng obj e;
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Figure 2. Overview of the solutions algorithms

HYBRID/GDP
Reformulated as MINLP
Fo_r two terms by BIG-M
disjunctions Convex Hull or Convex Hull
Sa

LOGIC BASED OA
LOGIC BASED GDB

MINLP
OA GBD EC

B&B(CRP) B&B
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Figure 3. Flowchart of LOGMIP
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Figure 4. Processes super structur e of second example
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